Болотов, Евгений Александрович
Евгений Александрович Болотов (1870, Казань — 28 сентября 1922, Москва) — русский учёный-механик, профессор. БиографияРодился в 1870 году в Казани в семье архитектора Александра Андреевича Болотова. Окончил с золотой медалью Первую казанскую гимназию, а в 1887 году с дипломом первой степени — математическое отделение физико-математического факультета Казанского университета[1]. В 1896 году стал приват-доцентом Московского университета по кафедре прикладной математики, которую тогда возглавлял Н. Е. Жуковский[2]. В период с 1900 по 1914 годы преподавал в Императорском Московском техническом училище. В 1907 году Болотова утвердили в степени магистра прикладной математики за работу «О движении материальной плоской фигуры, стеснённой связями с трением». Сохранился отзыв Н. Е. Жуковского на эту работу, где отмечалось, что главная заслуга её автора — геометрический анализ, позволивший до конца разъяснить все механические аспекты движения материальной площадки[3]. В 1909—1910 годах Болотов читал в Московском техническом училище курс теории упругости (его лекции были стенографированы и подготовлены к печати В. П. Ветчинкиным, но так и не были изданы). Им были написаны учебные руководства по курсам математического анализа (изданы в 1912 году) и аналитической геометрии, читавшиеся много лет. Одновременно, он вёл упражнения по курсу теоретической и аналитической механики, читавшемуся Н. Е. Жуковским[4]. Жуковский высоко оценивал лекторское мастерство Болотова[5]:
В 1914 году по рекомендациям профессоров А. П. Котельникова, Д. И. Дубяго, Д. А. Гольдгаммера, Н. Н. Парфентьева Болотов был приглашён в Императорский Казанский университет заведующим кафедрой теоретической и практической механики[6]. С этого времени вплоть до 1921 года он — ординарный профессор Казанского университета. В 1917 году Е. А. Болотов был утверждён проректором Казанского университета; 19 октября 1918 года избран, а 12 ноября утверждён в должности ректора Казанского университета. Выбыл из состава профессоров 1 января 1919 года, сложив с себя полномочия ректора; однако (после нового избрания Болотова в феврале профессором по кафедре механики) он 22 февраля этого года вновь был избран на должность ректора. 22 января 1921 года вышел в отставку с должности ректора Казанского университета. В том же году (после того, как 17 марта 1921 года умер Н. Е. Жуковский, заведовавший в Московском высшем техническом училище кафедрой теоретической механики) Е. А. Болотова вновь пригласили в МВТУ — возглавить эту кафедру. Болотов согласился и 15 декабря 1921 года был избран профессором по кафедре теоретической механики, но заведовал ей меньше года: 28 сентября 1922 года он скончался. Похоронен на Лазаревском кладбище[7]. Научная деятельностьНаучные исследования Е. А. Болотова посвящены различным разделам теоретической и аналитической механики. Вкладом в теорию винтов стала[8] его первая научная работа — статья 1893 года, в которой он решал задачу о разложении заданного винта на два винта с одинаковыми параметрами. Интерес представляют также[4] работы Е. А. Болотова в области гидромеханики, в которых исследовались движение тяжёлой несжимаемой жидкости и влияние ветра на скорость распространения малых волн по поверхности жидкости[2]. Важнейшее место в научном наследии Е. А. Болотова занимает его статья «О принципе Гаусса», изданная в 1916 г. в Казани и представляющая собой[9] монографию, посвящённую тщательному логическому анализу наиболее общего из дифференциальных вариационных принципов механики — принципа наименьшего принуждения Гаусса и ряда его обобщений. В этой работе, высоко оценённой Н. Е. Жуковским, Болотов обобщил принцип Гаусса на случай освобождения механической системы от части связей — позднее это направление исследований продолжили другие представители казанской школы механиков: Н. Г. Четаев, М. Ш. Аминов и др.[4] Как известно[10], принцип наименьшего принуждения позволяет для каждого момента времени выделять действительное движение среди всех кинематически осуществимых её движений, то есть движений, допускаемых наложенными на систему связями (текущее состояние системы предполагается фиксированным; реализовать такие движения можно, изменив приложенные к системе активные силы[11]. Современная формулировка принципа Гаусса применительно к системе материальных точек такова[12][13]: В каждый момент времени действительное движение механической системы с идеальными связями выделяется среди всех её кинематически осуществимых движений тем, что для него значение принуждения минимально. Здесь — число точек, входящих в систему, — масса -й точки, — равнодействующая приложенных к ней активных сил, — ускорение данной точки в кинематически осуществимом движении системы. Поскольку в силу II закона Ньютона вектор есть ускорение -й точки освобождённой от всех связей системы, выражению для принуждения можно придать вид разность, стоящая в скобках, есть составляющая вектора ускорения -й точки, вызванная действием связей. Именно они и принуждают систему со связями отклоняться от движения, свойственного освобождённой системе[14]. Рассмотрим, следуя Болотову, ряд обобщений принципа Гаусса. Принцип Гаусса в форме Маха — БолотоваВ 1883 г. Э. Мах, рассматривавший (как и сам Гаусс) лишь системы с двусторонними голономными связями, сформулировал[15] (без доказательства) следующее обобщение принципа Гаусса: его утверждение останется справедливым, если применить не полное, а частичное освобождение от связей[16][17]. Выражение для принуждения при этом остаётся неизменным, но роль векторов в нём будут играть уже ускорения точек системы в движении, ограниченном меньшим числом связей[9][18]. Е. А. Болотов строго доказал указанное обобщение принципа Гаусса, распространив его[9] на случай наличия неголономных связей, линейных по скоростям. При этом он первым указал на необходимость строгого определения понятия возможного перемещения при применении дифференциальных вариационных принципов механики к неголономным системам. Позднее Н. Г. Четаев в 1932—1933 гг. дал[19] для понятия возможного перемещения новое (аксиоматическое) определение и показал, что принцип наименьшего принуждения в форме Маха — Болотова применим и для нелинейных неголономных систем[20][17]. Рассмотренное обобщение принципа Гаусса представляет значительный практический интерес. Например, оно используется при компьютерном моделировании динамики систем твёрдых тел[21], когда при вычислении принуждения (которое минимизируется методами математического программирования) отбрасывают связи между телами системы, но не связи между точками, входящими в состав каждого из тел. Данное обобщение излагается в ряде учебников теоретической механики[22]. Принцип Гаусса в форме Больцмана — БолотоваИдею дальнейшего обобщения принципа Гаусса выдвинул[23] в 1897 г. Л. Больцман. Он указал, что при наличии односторонних связей утверждение данного принципа останется справедливым, если применить частичное освобождение от связей, отбрасывая все односторонние связи и произвольное число связей двусторонних[17]; однако приведённое Больцманом обоснование выдвинутого им положения ясностью не отличалось и вызвало ряд упрёков[24]. Болотов строго доказал и это обобщение принципа Гаусса (именуемое ныне[25] принципом наименьшего принуждения в форме Больцмана — Болотова), сделав при этом важное для практического использования принципа замечание. Чтобы сформулировать его, запишем (предполагая, что ограничения, налагаемые на скорости точек односторонними связями, выполнены в виде равенств; те связи, которые ослаблены по скоростям, вообще никак не ограничивают в текущий момент времени движение точек системы) условия, налагаемые соответственно двусторонними и односторонними связями на ускорения точек: здесь — число двусторонних, а — число односторонних связей; неотрицательные скаляры , называемые ускорениями ослабления связей, имеют[26] вид: где величины и зависят от состояния и времени, а при минимизации принуждения являются константами; круглые скобки обозначают скалярное произведение трёхмерных векторов. Суть упомянутого замечания Болотова состоит в том, что при минимизации принуждения следует рассматривать среди всех кинематически осуществимых движений лишь те, для которых ускорения ослабления каждой из односторонних связей не меньше ускорений их ослабления в действительном движении[27]. Порядок применения обобщённого принципа Гаусса к задачам с односторонними связями Болотов иллюстрирует[28] применительно к задаче о движении весомого однородного стержня, у которого конец опирается на гладкую горизонтальную плоскость , а конец может скользить по линии пересечения двух других гладких плоскостей и , перпендикулярных первой плоскости и друг другу. Болотов проводит полный анализ данной задачи и определяет условия, при которых тот или иной конец стержня отрывается от плоскости, на которую он опирался. Данная задача интересна тем, что применительно к ней даёт неверные результаты метод выявления ослабляемой связи, предложенный в 1838 г. М. В. Остроградским в мемуаре «О мгновенных перемещениях систем, подчинённых переменным условиям»[29]; ошибку в рассуждениях Остроградского нашёл в 1889 г. А. Майер[30]. В 1990 году В. А. Синицын получил ещё одну форму принципа Гаусса[31], в которой (при надлежащих ограничениях на рассматриваемые кинематически осуществимые движения) допускается освобождение системы не от всех (как у Болотова), а лишь от части односторонних связей[17][32]. Принцип Гаусса в теории удараЕ. А. Болотов показал, что обобщённый принцип Гаусса применим также и к ряду задач теории удара, но эти его результаты носят менее общий характер, причём он ограничивается лишь случаем абсолютно неупругого удара. Иллюстрирует свой метод Болотов на уже упоминавшейся задаче о весомом однородном стержне (предполагая, что к центру масс стержня прикладывается заданный ударный импульс)[33]. Публикации
Примечания
Литература
Ссылки |