Четаев, Николай Гурьевич
Никола́й Гу́рьевич Чета́ев (23 ноября (6 декабря) 1902 года, Карадули, Лаишевский уезд, Казанская губерния, Российская империя — 17 октября 1959 года, Москва, СССР) — российский советский механик и математик, педагог, член-корреспондент АН СССР (1943), действительный член Академии артиллерийских наук (11.04.1947), доктор физико-математических наук (1939), профессор (1930), лауреат Ленинской премии (1960), заслуженный деятель науки Татарской АССР (1940), инженер-майор (1955)[1]. БиографияС 1920 года — студент математического отделения физико-математического факультета Казанского университета. С 1925 г. — аспирант по кафедре механики Казанского университета. В марте 1929 — марте 1930 г. был на стажировке в Гёттингенском университете в Германии. В марте-сентябре 1930 г. — доцент, в сентябре 1930 — ноябре 1940 г. — профессор, заведующий кафедрой аналитической механики механического факультета Казанского университета, где создал школу специалистов по теории устойчивости движения. Одновременно в 1933—1937 гг. — заведующий кафедрой аэродинамики Казанского авиационного института. С ноября 1940 г. работал в Институте механики АН СССР: старший научный сотрудник и заведующий отделом общей механики; в июне 1944 — январе 1946 г. — заместитель директора института; в январе 1946 — сентябре 1953 г. — директор института; с сентября 1953 г. — заведующий отделом общей механики. Одновременно с 1944 г. вёл преподавательскую деятельность, являясь профессором Московского государственного университета. Вошёл в первоначальный состав Национального комитета СССР по теоретической и прикладной механике (1956)[2]. Крупный специалист по общей механике, аналитической динамике и устойчивости движения. Автор более 100 научных работ по этим вопросам. Установил общую теорему о неустойчивости движения (1934), исследовал продольную устойчивость нейтрального самолёта, устойчивость боковых движений самолёта и его устойчивость на взлёте и посадке. В 1943 г. дал важное для баллистики достаточное условие устойчивости по отношению к углу нутации вращательных движений снаряда и оценку для возмущений, предложил методы решения задач об устойчивости вращательного движения снаряда, что позволило обеспечить кучность боя и устойчивость снарядов при их полёте по баллистической траектории. В 1946 г. доказал достаточность условия устойчивости снарядов Н. В. Маиевского на настильной траектории. Впервые со всей строгостью решил задачу об устойчивости движения снаряда с полостями, полностью заполненными жидкостью. В 1957 г. решил задачу об устойчивости движения гироскопа в кардановом подвесе с учётом масс колец подвеса. Ряд работ посвящён проблемам аналитической динамики, многие из которых являются классическими. Распространил принцип К. Гаусса на случай неголономной связи. Решил знаменитую задачу об обращении теоремы Ж. Лагранжа об устойчивости равновесия, развил уравнения динамики Ж. Пуанкаре, для нелинейных связей нашёл возможные перемещения, при которых принципы Лагранжа и Гаусса оказались совместными, развил принципы устойчивости и обобщил важную теорему Ляпунова — Пуанкаре о характеристических числах канонических уравнений и др. Фундаментальные исследования по теории устойчивости движения обобщили и развили знаменитые работы А. М. Ляпунова по устойчивости движения и сделали возможным практическое приложение теории. Современные проблемы регулирования, гироскопии и управления летательными аппаратами нельзя решать без теоретически обоснованных расчётов устойчивости по Ляпунову — Четаеву[2]. Похоронен на Немецком (Введенском) кладбище (13 уч.)[2]. Награды и премии
Научная деятельностьИсследования посвящены аналитической механике, устойчивости движения, теории дифференциальных уравнений[3]. В 1927—1928 гг. Четаев обобщил уравнения Пуанкаре в групповых переменных на случай нестационарных связей. При этом он установил связь между методами аналитической механики и методами теории непрерывных групп. Он доказал, исследуя уравнения Пуанкаре, существование относительного интегрального инварианта соответствующей системы дифференциальных уравнений траекторий[4]. В 1931—1941 гг. Четаев поставил и исследовал вопрос о совместимости принципов Даламбера — Лагранжа и Гаусса применительно к системам с нелинейными неголономными связями. Для таких систем он ввёл новую, уточнённую трактовку понятия возможного перемещения[5]; сейчас определение возможных перемещений по Четаеву рассматривается как наиболее общее определение возможных перемещений[1]. Принцип наименьшего принуждения Гаусса Четаев распространил[6] на случай наличия нелинейных дифференциальных связей, налагаемых на точки механической системы. В 1930—1933 гг. Четаев, работая над проблемой обращения теоремы Лагранжа об устойчивости равновесия, доказал основные теоремы о неустойчивости равновесия[4]. В 1938 г. он вывел теорему, обратную теореме Лагранжа об устойчивости равновесия[7]. Доказал (1932 г.) ряд теорем о неустойчивости движения[7]. Наиболее известной из них является следующая теорема Четаева о неустойчивости движения[8]: Если для дифференциальных уравнений возмущённого движения можно найти такую функцию , что она ограничена в области , существующей в сколь угодно малой окрестности невозмущённого движения, и её производная , взятая в силу уравнений возмущённого движения, положительно определена в области , то невозмущённое движение неустойчиво. Он показал также (1945), что если невозмущённое движение консервативной системы устойчиво, то у решений уравнений в вариациях все характеристические числа равны нулю. Уравнения в вариациях являются при этом приводимыми и имеют знакоопределённый квадратичный интеграл (фундаментальная теорема Четаева)[7]. Им предложены (1949 г.) методы решения задач об устойчивости неустановившихся движений, найдены достаточные условия устойчивости вращательных движений снаряда. Четаев решил сложную математическую задачу по определению оптимальной крутизны нарезки орудийных стволов, что позволило обеспечить кучность боя и устойчивость снарядов при их полёте по баллистической траектории[9]. В динамике системы твёрдых тел Четаев указал ныне широко распространённый приём построения функции Ляпунова в виде «связки» (то есть линейной комбинации) первых интегралов уравнений движения[10]. Школа Н. Г. Четаева
Семья
Вторая жена — Вера Александровна Самойлова (1907—1979), дочь физиолога А. Ф. Самойлова, внучка инженера-предпринимателя А. В. Бари.
Избранные трудыКниги
Статьи
Примечания
Литература
Ссылки
|