Арифметическая группаАрифметическая группа — это группа, получаемая как целые точки алгебраической группы, например, Арифметические группы возникают естественным образом при изучении арифметических свойств квадратичных форм и других классических областей теории чисел. Они также являются источником для очень интересных примеров римановых многообразий, а потому представляют интерес для дифференциальной геометрии и топологии. Наконец, эти две области объединяются в теорию автоморфных форм, которая является фундаментальной в современной теории чисел. ИсторияОдним из источников математической теории арифметических групп является алгебраическая теория чисел. Классическую теорию приведения квадратичных и эрмитовых форм Шарля Эрмита, Германа Минковского и других можно рассматривать как вычисление фундаментальных областей действий некоторых арифметических групп на соответствующих симметрических пространствах[1][2]. Эта область была связана с геометрией чисел Минковского и ранними разработками в изучении арифметических инвариантов числовых полей, таких как дискриминант. Арифметические группы можно рассматривать как сильное обобщение групп единиц числовых полей на некоммутативные условия. Те же группы появляются также в аналитической теории чисел при изучении классических модулярных форм и при разработке их обобщений. Конечно, две области были связаны, как можно видеть в примере лагландовского вычисления объёма некоторых фундаментальных областей с помощью аналитических методов[3]. Кульминацией этой классической теории была работа Зигеля, который показал во многих случаях конечность объёма фундаментальной области. Для развития современной теории была необходима подготовительная работа и эту работу в области алгебраических групп сделали Арман Борель, Андре Вейль, Жак Титс и другие[4][5]. Вскоре после этого Борель и Хариш-Чандра доказали конечность кообъёма в полной общности[6]. Тем временем наблюдался прогресс в общей теории решёток в группах Ли, который обеспечили работы Атле Сельберга, Григория Маргулиса и Давида Каждана, М. С. Рагунатана и других. Современное положение после этого периода было зафиксировано в трактате Рагунатана, опубликованном в 1972[7]. В семидесятых годах Маргулис революционизировал эту область, доказав, что в «большинстве» случаев арифметические построения применимы ко всем решёткам в данной группе Ли[8]. Некоторые ограниченные результаты в этом направлении были получены ранее Селбергом, но методы Маргулиса (использование эргодических теоретических средств для действия на однородные пространства) были совершенно новыми в этом контексте и оказали крайне высокое влияние на последующих исследователей, эффективно обновляя старую дисциплину геометрии чисел, что позволило самому Маргулису доказать гипотезу Оппенгейма[англ.]. Более строгие результаты (Теоремы Ратнер[англ.]) были позднее получены Мариной Ратнер. В другом направлении, классическая теория модулярных форм расцвела в виде современной теории автоморфных форм. Движущей силой этого расцвета в большей части была программа, предложенная Робертом Ленглендсом. Одним из основных средств, используемых здесь, является формула следов[англ.], представленная в работе Селберга[9] и развитая для более общих условий Джеймсом Артуром[10]. Наконец, арифметические группы часто используются для построения интересных примеров локально симметричных римановых многообразий. Особенно активно исследования проводились в области арифметических гиперболических 3-многообразий, о которых Тёрстон писал[11]: «...часто имеют особую красоту». Определение и построениеАрифметические группыЕсли является алгебраической подгруппой группы для некоторого , то мы можем определить арифметическую подгруппу группы как группу целых точек . В общем случае не очевидно, как точно определить понятие «целых точек» -группы, а подгруппа, определённая выше, может меняться, если мы возьмём другое вложение Тогда лучшее определение понятия — взять в качестве определения арифметической подгруппы группы любую группу , которая соизмерима[англ.] (это значит, что как , так и являются конечными множествами) с группой , определённой выше (с учётом любого вложения в ). По этому определению с алгебраической группой ассоциирован набор «дискретных» подгрупп, соизмеримых друг с другом. Использование числовых полейЕстественным обобщением вышеприведённого построения является следующее: пусть — числовое поле с кольцом целых , а — алгебраическая группа над . Если нам задано вложение , определённое над , то подгруппа может быть с полным основанием названа арифметической группой. С другой стороны, класс групп, полученных таким образом, не больше, чем класс арифметических групп, определённых выше. Более того, если мы рассмотрим алгебраическую группу над , полученную ограничением скаляров из в , и -вложение , порождённое (где ), то группа, построенная выше, совпадает с . ПримерыКлассическим примером арифметической группы является или тесно связанные группы , и . Для группа или, иногда, , называется модулярной группой, так как она связана с модулярной кривой. Похожими примерами являются модулярные группы Зигеля[англ.] . Другие хорошо известные и изученные примеры — группы Бианки[англ.] , где является свободным от квадратов целым, а является кольцом целых в поле , и модулярные группы Гильберта — Блюметраля[англ.] . Другие классические примеры задаются целыми элементами в ортогональной группе квадратичных форм, определённых над числовым полем, например, . Связанное построение — выбор групп единиц порядков[англ.] в алгебрах кватернионов над числовыми полями (например, порядок кватернионов Гурвица[англ.]). Похожие построения можно осуществить с унитарными группами эрмитовых форм и хорошо известным примером является модулярная группа Пикарда[англ.]. Арифметические решётки в полупростых группах ЛиКогда является группой Ли, можно определить арифметическую решётку в следующим образом: для любых алгебраических групп , определённых над , таких, что существует морфизм с компактным ядром, образ арифметической подгруппы в является арифметической решёткой в . Поэтому, например, если и являются подгруппами , то является арифметической решёткой в (однако существует много больше решёток, соответствующих другим вложениям). Например, является арифметической решёткой в . Теорема Бореля — Хариш-ЧандрыРешётка в группе Ли обычно определяется как дискретная подгруппа с конечным кообъёмом. Терминология, представленная выше, сцеплена с этой, поскольку теорема, принадлежащая Борелю и Хариш-Чандре, утверждает, что арифметическая подгруппа в полупростой группе Ли имеет конечный кообъём (дискретность очевидна). Теорема более точна, она утверждает, что арифметическая решётка является кокомпактной тогда и только тогда, когда «форма» группы , используемая для её определения (т.е. -группа ) анизотропна. Например, арифметическая решётка, ассоциированная с квадратичной формой от переменных над , будет кокомпактной в ассоциированной ортогональной группе тогда и только тогда, когда квадратичная форма не обращается в нуль в любой точке на . Теорема Маргулиса об арифметичностиБлистательный результат, полученный Маргулисом, является частичным обращением теоремы Бореля — Хариш-Чандры: для определённых групп любая решётка является арифметической. Этот результат верен для всех неприводимых решёток в полупростых группах Ли вещественного ранга, большего двух[12][13]. Например, все решётки в являются арифметическими, если . Главным новым элементом, который использовал Маргулис для доказательства теоремы, была супержёсткость[англ.] решёток в группах высокого ранга, которую он доказал для получения своего результата. Неприводимость играет роль, только если имеет множитель с вещественным рангом единица (в противном случае теорема выполняется всегда) и не проста. Это означает, что для любого разложения решётка несоизмерима с произведением решёток в каждом множителе . Например, решётка в неприводима, в то время как таковой не является. Теорема Маргулиса об арифметичности (и супержёсткости) выполняется для некоторых групп Ли ранга 1, а именно для и исключительной группы [14][15]. Известно, что теорема не выполняется для всех групп для и для при . Не известны неарифметические решётки в группах , если . Арифметические фуксовы и кляйновы группыАрифметическая фуксова группа строится из следующих данных: чисто вещественное числовое поле[англ.] , алгебра кватернионов над и порядок в . Требуем, чтобы для одного вложения алгебра была изоморфна матричной алгебре , а все остальные должны быть изоморфны кватернионам Гамильтона. Тогда группа единиц является решёткой в , которая изоморфна и кокомпактна во всех случаях, за исключением случаев, когда является матричной алгеброй над . Все арифметические решётки в получаются таким образом (с точностью до соизмеримости). Арифметические кляйновы группы строятся аналогично, за исключением того, что от требуется наличие в точности одного комплексного места, а для всех вещественных мест должны быть кватернионами Гамильтона. Они исчерпывают все арифметические классы соизмеримости в КлассификацияДля любой простой полупростой группы Ли , теоретически, возможно классифицировать (с точностью до соизмеримостью) все арифметические решётки в , аналогично случаям , описанным выше. Это сводится к классификации алгебраических групп, вещественные точки которых изоморфны с точностью до компактного множителя группе [13]. Задача о конгруэнтной подгруппеКонгруэнтная подгруппа является (грубо говоря) подгруппой арифметической группы, определённой выбором всех матриц, удовлетворяющих некоторым уравнениям по модулю целого числа, например, выбором группы 2 х 2 целочисленных матриц с диагональными (соответственно, внедиагональными) элементами, конгруэнтными 1 (соответственно, 0) по модулю положительного целого числа. Они всегда являются подгруппами конечного индекса, а задача о конгруэнтной подгруппе, грубо говоря, спрашивает, получаются ли все подгруппы таким образом. Гипотеза (обычно приписываемая Серру), утверждает, что это верно для (неприводимых) решёток в группах высокого ранга и неверно для групп ранга единица. Гипотеза остаётся открытой в такой общности, но имеется много результатов, устанавливающую верность гипотезы для конкретных решёток (для положительного и отрицательного случаев). -арифметические группыВместо выбора целых точек в определении арифметической решётки можно взять точки, которые являются целыми только вне конечного набора простых чисел. Это ведёт к понятию -арифметической решётки (где означает набор чисел, обратных простым). Прототипичным примером является . Они являются естественными решётками в некоторых топологических группах, например, является решёткой в ОпределениеФормальное определение -арифметической группы для конечного множества простых чисел такое же, что и для арифметических групп с , заменённым на , где является произведением простых в . Решётки в группах Ли над локальными полямиТеорема Бореля — Хариш-Чандры обобщается на -арифметические группы следующим образом: если является -арифметической группой группы в -алгебраической группе , то является решёткой в локально компактной группе
Некоторые приложенияЯвные экспандерыАрифметические группы со свойством (T) Каждана[англ.] или более слабым свойством () Любоцкого и Циммера можно использовать для построения экспандеров (Маргулис) или чётных графов Рамануджана (Любоцкий — Филлипс — Сарнак[16][17]). Известно, что такие графы существуют в изобилии согласно вероятностным доводам, но явная природа таких построений делают их интересными. Экстремальные поверхности и графыИзвестно, что конгруэнтность накрытий арифметических поверхностей[англ.] приводит к поверхностям с большим радиусом инъективности[18]. Подобным же образом графы Рамануджана, построенные Любоцким, Филлипсом и Сарнаком, имеют большой обхват. Известно, что из свойства Рамануджана вытекает, что локальные обхваты графа почти всегда большие[19]. Изоспектральные многообразияАрифметические группы могут быть использованы для построения изоспектральных многообразий. Впервые это построение реализовала Мари-Франс Винера[англ.][20] и вскоре после этого появились различные варианты её построения. Задача изоспектральности является, фактически, очень пригодной для изучения в ограниченных условиях арифметических многообразий[21]. Ложные проективные плоскостиЛожная проективная плоскость[22] — это комплексная поверхность, которая имеет те же числа Бетти, что и проективная плоскость , но не биголоморфна[англ.] ей. Первый пример такой плоскости нашёл Мамфорд. Согласно труду Клинглера (независимо проверенного Енгом) все они являются факторпространствами 2-шара по арифметическим решёткам в . Возможные решётки классифицировали Прасад и Енг, а завершили классификацию Картрайт и Стигер, проверившие, что они действительно соответствуют ложным проективным плоскостям. Примечания
Литература
|