Абу Камил
Абу́ Ка́мил Шуджа́ ибн А́слам ибн Муха́ммад ал-Ха́сиб ал-Мисри́ (араб. أبو كامل شجاع بن أسلم بن محمد الحاسب المصري; ок. 850 — ок. 930) — арабский[4] математик из Египта, автор нескольких сочинений, оказавших большое влияние на историю математики[5]. Он считается первым математиком, который использовал и принимал иррациональные числа в качестве решений и коэффициентов уравнений[6]. Его математические методы позднее перенял Фибоначчи, что позволило Абу Камилю сыграть важную роль в распространении алгебры в средневековой Европе[7], где он был известен как Auoquamel[8]. Абу Камил внёс существенный вклад в алгебру и геометрию[9]. Он был первым исламским математиком, который систематически работал с алгебраическими уравнениями со степенями выше [7][10], и решал системы нелинейных уравнений с тремя неизвестными[11]. Он проиллюстрировал правила знаков для раскрытия скобок при умножении [12]. Все задачи он записывал риторически, например, использовал арабское выражение "māl māl shayʾ" ("квадрат-квадрат-вещь") для (как )[7][13]. Одной из примечательных черт его трудов было перечисление всех возможных решений данных уравнений[14]. Энциклопедист Ибн Халдун классифицировал Абу Камиля как хронологически второго величайшего алгебраиста после Аль-Хорезми[15]. БиографияО жизни и карьере Абу Камиля известно крайне мало, за исключением того, что он был из Египта и был преемником аль-Хорезми, с которым никогда лично не встречался[7]. Научные труды«Книга об алгебре и алмукабале»«Книга об алгебре и алмукабале» (араб. كتاب الجبر والمقابلة) является, возможно, важнейшим после труда аль-Хорезми сочинением по алгебре[16][17]. В то время как «Алгебра» аль-Хорезми была рассчитана на широкую аудиторию, Абу Камил, напротив, обращался к другим математикам или читателям, знакомым с Началами Евклида[17]. В этой книге Абу Камил решает системы уравнений, решениями которых являются целые числа и дроби, принимая иррациональные числа (в виде квадратного корня или корня четвёртой степени) как решения и коэффициенты к квадратным уравнениям[16]. Примечательно, что пользуясь принципами геометрической алгебры, Абу Камил в то же время отступает от принципа однородности, которого придерживались древнегреческие математики: он изображает отрезками и число, и первую, и вторую степень неизвестной. Первая глава учит алгебре через решение задач из геометрии, часто включающих неизвестную переменную и квадратные корни. Вторая глава посвящена шести каноническим видам квадратных уравнений, встречающимся в книге Аль-Хорезми[14], но некоторые из них решаются более прямолинейно и сопровождаются геометрическими иллюстрациями и доказательствами[14][10] с использованием предложений из II книги «Начал» Евклида. Третья глава содержит примеры, где в качестве решений и коэффициентов также используются квадратичные иррациональности[14]. Четвёртая глава показывает, как эти иррациональности используются для решения задач, связанных с многоугольниками. Остальная часть книги содержит решения систем неопределённых уравнений, практические задачи и абстрактные задачи для досуга[14]. Несколько исламских математиков написали комментарии к этой работе, включая аль-Истахри аль-Хасиба и Али ибн Ахмада аль-Имрани (ум. 955–956)[18], но оба комментария ныне утеряны[9]. Книга оказала влияние на алгебраическое сочинение Абу Бакра аль-Караджи, а также на «Книгу об абаке» Леонардо Пизанского Фибоначчи. В средневековой Европе этот трактат был переведён на испанский, древнееврейский и латинский языки. Некоторые разделы книги были включены и улучшены в работе Иоанна Севильского, лат. Liber mahameleth. Частичный перевод на латынь был сделан в XIV веке Вильямом де Луна, а в XV веке всё произведение было также переведено на иврит Мордехаем Финци[14]. «Книга о редкостях искусства арифметики»«Книга о редкостях искусства арифметики» (араб. كتاب الطرائف في الحساب) посвящена решению неопределённых уравнений в целых числах[9]. Это самая ранняя известная работа на арабском языке, где рассматриваются решения для типов неопределённых уравнений, встречающихся в «Арифметике» Диофанта. Однако Абу Камил объясняет некоторые методы, которые не встречаются ни в одном сохранившемся экземпляре «Арифметики»[7]. Он также описывает одну задачу, для которой он нашёл 2 678 решений[19]. «Книга о пятиугольнике и десятиугольнике»«Книга о пятиугольнике и десятиугольнике» (араб. كتاب المخمس والمعشر; возможно, что в подлиннике она называлась «Книга об измерении») не сохранилась в арабском оригинале и известна только в древнееврейском и латинском переводах. Здесь с помощью алгебраических методов вычисляются стороны вписанного и описанного правильного пятиугольника и десятиугольника[9]. В частности, Абу Камил использует уравнение для расчёта численного приближения стороны правильного пятиугольника, вписанного в окружность с диаметром 10[20]. Он также использует золотое сечение в некоторых своих расчётах[19]. Фибоначчи знал этот трактат Абу Камиля и активно использовал его в своём сочинении «Практика геометрии» (лат. Practica geometriae)[9]. «Книга птиц»«Книга птиц» (араб. كتاب الطير) это небольшой трактат, обучающий решению неопределённых систем линейных уравнений с положительными целочисленными решениями[17]. Название происходит от типа задач, известных на Востоке, которые связаны с покупкой различных видов птиц. Абу Камил написал во введении:
Абу Камил, оставался непревзойдённым на протяжении всего Средневековья в попытках найти все возможные решения некоторых из своих задач[14]. «О вычислениях и геометрии»«О вычислениях и геометрии» (араб. كتاب المساحة والهندسة) это руководство по геометрии для нематематиков, таких как землемеры и другие государственные служащие, в котором представлены правила для расчёта объёма и площади поверхности твёрдых тел (в основном прямоугольных параллелепипедов, правильных круговых призм, четырёхугольных пирамид и круговых конусов). В первых главах приводятся правила для определения площади, диагонали, периметра и других параметров для различных типов треугольников, прямоугольников и квадратов[7]. Утраченные работыНекоторые из утраченных работ Абу Камиля включают:
Ибн ан-Надим в своём «Фихристе» упомянул следующие дополнительные названия: «Книга о счастье» (араб. كتاب الفلاح), «Книга ключа к счастью» (араб. كتاب مفتاح الفلاح), «Книга достаточного» (араб. كتاب الكفاية) и «Книга ядра» (араб. كتاب العصير)[10]. НаследиеТруды Абу Камиля оказали влияние на других математиков, таких как аль-Караджи и Фибоначчи, и, таким образом, сыграли значительную роль в развитии алгебры на века вперёд[10][22]. Многие его примеры и алгебраические методы впоследствии были скопированы Фибоначчи в его лат. Practica geometriae и других работах[10][19]. Явные заимствования, хотя и без прямой отсылки к Абу Камилю, также встречаются в лат. Liber Abaci Фибоначчи[23]. См. такжеПримечания
ЛитератураСочинения
О нём
Ссылки
|