Modelo Erdős–Rényi
Na teoria de grafos, o modelo Erdõs-Rényi é um dos dois modelos estritamente relacionados para gerar grafos aleatórios, que inclui o limite entre cada par de nós com igual probabilidade, independentemente das extremidades. O nome do modelo surgiu dos matemáticos Paul Erdős e Alfréd Rényi, que primeiro introduziram um dos dois modelos em 1959, o outro modelo foi introduzido de forma independente e contemporânea por Edgar Gilbert. Estes modelos podem ser utilizados nos métodos probabilísticos para provar a existência dos grafos de forma a satisfazer várias propriedades, ou fornecer definição rigorosa do que significa uma propriedade manter-se para quase todos os grafos. Hoje em dia existe um grande número de modelos para estruturar redes. Alguns desses modelos são mecanismos, significando que codificam uma série de regras matemáticas e consegue-se produzir certo tipo de redes. A finalidade destes modelos é frequentemente representada por certas relações de causa e efeito. Normalmente, esses modelos têm um único mecanismo dominante, projetado para produzir certos tipos específicos de topologias padrão.O tipo mais comum de modelo grafo aleatório é o modelo Erdős-Rényi (muitas vezes designado por grafo de Poisson aleatório ou grafo aleatório Binomial).[1] DefiniçãoExistem duas variantes relacionados do modelo de grafos aleatórios Erdős-Rényi (ER).
O parâmetro neste modelo pode ser pensado como a função ponderada; como aumenta de até o modelo torna-se muito mais susceptível a incluir grafos com mais extremidades e muito menos susceptível de incluir com menos extremidades. Em particular, o caso corresponde ao caso onde todos grafos nos vértices são escolhidos com igual probabilidades. O comportamento dos grafos aleatórios são muitas vezes desproporcionados no caso o é número de vértices, que tende para infinito. Apesar e poderem ser fixos neste caso, também podem ser funções dependentes de . Quase todos os grafos com estão interligados. Significa que, como tende para infinito, a probabilidade deste grafo nos vértices com extremidades e probabilidade é ligada, tende para . Comparação entre os dois modelosO número esperado de extremidades em é demonstrada pela lei dos grandes números em que qualquer grafo tem aproximadamente muitas extremidades (desde que o número esperado de extremidades tenda para infinito). Por conseguinte, uma heurística se pn2 → ∞ deve comportar-se de forma semelhante a com o como aumenta. Para muitas propriedades do grafo. Se P é qualquer propriedade que é função monótona de um grafo em relação ao sub grafo ordenado (significa que, se A é um sub grafo de B e A satisfaz P então B satisfará P), então na afirmação “ P vale para quase todos os grafos na ” e “ P vale para quase todos os grafos em que ” são equivalentes (previsto Pn2→ ∞). Por exemplo, se P é a propriedade de ser ligado, ou se P contém propriedade de um ciclo Hamiltoniano. No entanto, isto não é necessariamente para assegurar as propriedades de funções não-monótonas (por exemplo, a propriedade de possuir um número par de extremidades). Na prática, o modelo é mais vulgarmente utilizado nos dias de hoje, em parte, devido à facilidade de análise autorizado pela independência das arestas. Propriedades do G(n, p)Com a notação abaixo, a representação gráfica no tem em média arestas. A distribuição do grau de qualquer vértice é binomial:[2] Onde é o número total de vértices na representação do grafo. Desde Esta distribuição é designada por distribuição Poisson para grande e Num artigo de 1960, Erdős e Rényi[3] descreveram o comportamento de muito preciso para vários valores de Estes resultados incluíam:
trata-se de um limiar para a ligação acentuada de . Outras propriedades do grafo podem ser descritas com precisão com a tender para o infinito. Por exemplo, existe um (aproximadamente igual a 2 log2(n)) de tal modo que o maior clique em tem quase certamente qualquer tamanho ou . Teoria da PercolaçãoA teoria de percolação examina um grafo finito ou infinito e elimina extremidades (ou ligações) de forma aleatória. Assim, o processo "Erdős-Rényi" é, de facto, uma ligação não ponderada de percolação no grafo completo. (Um refere-se à percolação em que os nós e/ou ligações são eliminados com pesos heterogéneos como percolação ponderada). Como a teoria de percolação tem muito das suas origens na física, grande parte da pesquisa feita foi sobre malhas em espaços euclidianos. A transição a partir do qual os grafos com componente de maiores dimensões é análogo ao componente de pequenas dimensões, mas para malhas o ponto de transição é difícil de determinar. Os físicos muitas vezes referem-se ao estudo da grafo completo como uma teoria de campo médio. Assim, o processo Erdős-Rényi é o caso mean-field de percolação. Alguns trabalhos significativos também foram feitos sobre percolação em grafos aleatórios. De um ponto de vista físico este ainda seria um modelo de mean-field, de modo a justificação da pesquisa ser muitas vezes formulada em termos da robustez do grafo, visto como uma rede de comunicação. Dado um grafo aleatório de n ≫ 1 os nós com um grau médio <k>. Elimina aleatoriamente uma fracção 1 − p′ de nós e deixar apenas uma fracção a partir da rede. Existe um limiar de percolação crítico abaixo do qual a rede torna-se fragmentada enquanto acima de um componente ligado de grandes dimensões de ordem existe. O tamanho relativo do componente gigante, P ∞, é dada pela[4] [5][6][7] PressupostosAmbas hipóteses principais do modelo (extremidades que são independentes e cada lado que é igual probabilidade) pode ser inadequado para a modelação de fenómenos reais. Em particular, um grafo Erdős-Rényi não tem pontas pesadas, como acontece em muitas redes reais. Além disso, tem baixo agrupamento, ao contrário de muitas redes sociais. Para obter alternativas a modelação populares, existe Barabási-Albert e modelo Watts e Strogatz . Note-se que estes modelos alternativos não são processos de percolação, mas representam um modelo de crescimento e de interligação, respetivamente.[8] HistóriaO modelo G(n,p) foi introduzido por Edgar Gilbert num artigo em 1959, que estudou o limite de ligação mencionado acima. O modelo G(n,M) foi introduzido por Erdős e Rényi no seu artigo em 1959. Tal como acontece com Gilbert, as suas primeiras investigações foram como a ligação de G(n,M), com análise seguinte mais detalhada, em 1960. Interação Erdős-Rényi Modelo Grafos Aleatórios (comunidades de redes ER)Uma simples generalização do modelo (ER) de grafo aleatório aplica-se como apresentado a seguir. Deixe o conjunto de nós n ser dividido em comunidades q, composto por cada nó, com , e deixar que seja dada a seguinte matriz q x q de probabilidades de ligação entre qualquer nó da comunidade l com qualquer outro nó da comunidade m (possivelmente com l = m)
onde é por sua vez uma matriz q x q não negativa que satisfaz o equilíbrio detalhado
Ao usar essa construção percebe-se uma generalização do grafo aleatório ER onde representa a matriz de ligações médias entre a comunidade l e a comunidade m, as auto-casos l = m sendo aqueles onde nós recuperamos a rede ER único (q=1). É possível provar que tal comunidade de redes de ER está a filtrar quando satisfaz a matriz
que, em particular, significa que a percolação "limiar" é realmente agora uma superfície dada pela seguinte equação.
Ao contrário do caso q = 1 (onde nós recuperamos o limiar de percolação c = 1, ver acima) esta equação pode ter várias soluções e, em geral, o número de soluções podem crescer mais rapidamente do que n.
Referências
|