Catenária Nota: Para o mesmo conceito no contexto ferroviário, veja Catenária (caminho de ferro). Em matemática, catenária é a curva assumida por uma corrente ou cabo flexível suspensa fixada apenas por suas extremidades e sujeita somente à força de seu próprio peso (gravidade). A curva catenária tem um formato semelhante a letra U ou a um arco de parábola e é bastante comum, estando presente, por exemplo, no design de alguns arcos arquitetônicos. Aspectos históricosA palavra "catenária" vem do Latim catena,[1] que significa corrente. Christiaan Huygens foi o pioneiro no uso do termo catenária em uma correspondência com Gottfried Leibniz em 1690.[2] O problema de descrever matematicamente a curva catenária foi proposto, oficialmente, por Jakob Bernoulli, que, em 1690 no Acta Eruditorum, periódico científico da época, lançou o desafio: “E agora vamos propor este problema: encontrar a curva formada por um fio pendente, livremente suspenso a partir de dois pontos fixos”.[3] Anteriormente, Galileu Galilei já havia demonstrado interesse no problema e propôs que a curva, devido a sua aparência, seria aproximadamente uma parábola.[4] No entanto, em 1646 Christiaan Huygens, aos 17 anos, demonstrou que a catenária não poderia ser uma parábola. Demonstração realizada também por Joachim Jungius em 1627, divulgada, contudo, postumamente, em 1669.[5][6] As resoluções corretas para o problema, apresentadas por Gottfried Leibniz, Huygens e Johann Bernoulli, foram publicadas em junho de 1691 no Acta Eruditorum.[3] Na arquitetura, o pioneiro a propor a curva catenária no design de arcos foi o cientista Robert Hooke. Motivado pela reconstrução da Catedral de São Paulo, em Londres, buscava o formato ideal para a construção de arcos, feito com a menor quantidade possível de materiais[7] e com boa estabilidade. Em 1671 anunciou a The Royal Society que havia descoberto a maneira ideal de construir arcos, sem, no entanto, dizer qual seria.[8] Em 1675, publicou no apêndice do seu livro “A Description of Helioscopes and Some Other Instruments” um anagrama encriptado que revelaria, nas suas palavras, “a verdadeira forma matemática e mecânica para a construção de arcos de todos os tipos”, no entanto, não divulgou a resolução do anagrama enquanto vivo. Somente em 1705, dois anos após seu falecimento, o responsável pelo espólio de Hooke publicou a solução: “Ut pendet continuum flexile, sic stabit contiguum rigidum inversum”,[9] o que significa “Assim como uma forma flexível e contínua fica pendurada, quando invertida, permanecerá contiguamente rígida”. Descrição matemáticaA equação da catenária em coordenadas cartesianas é dada pelo cosseno hiperbólico e a sua equivalente exponencial:[5][10]
na qual o parâmetro relaciona a componente horizontal da tensão () com o peso por unidade de comprimento . A equação de Whewell é:[5]
na qual é o comprimento de arco e o ângulo entre a reta tangente à curva e o eixo .
na qual é a curvatura. A equação do raio de curvatura é:
PropriedadesQuando uma parábola rola sem deslizar sobre a reta tangente à sua curva, a rolete traçada pelo seu foco (denominado gerador ou polo) é uma catenária.[12][13] A envolvente de uma catenária é uma tractriz.[14] Rodas em forma de qualquer polígono regular, com exceção do triângulo, conseguem rolar sem saltar em uma superfície constituída por saliências de catenárias invertidas, desde que as dimensões das catenárias e do polígono sejam coerentes.[15][16] A revolução da catenária em torno de um eixo adequado gera a superfície de mínima área catenoide, que é a forma assumida por uma película de água e sabão limitada por dois círculos, demonstração feita por Euler em 1744.[11] AnáliseNo problema da catenária existem duas condições importantes: o cabo é considerado flexível, logo as tensões são sempre tangentes a curva, e está em equilíbro, ou seja, as forças resultantes nas direções x e y devem ser nulas. A partir destas duas condições são obtidas as equações que darão início à demonstração matemática. Considerando, primeiramente, o comprimento de arco entre o ponto mais baixo da curva Po (0,y) e P1 (x,y). Neste pedaço da curva atuam três forças: a tensão To no Po, a tensão T no P1 e a força peso. A To atua somente na direção x, sendo seu vetor definido como (,0). A força peso atua somente na direção y, sendo seu vetor definido como (0, -), no qual é o peso por unidade de comprimento. A tensão T atua na direção da reta tangente à curva no ponto P1 (devido à flexibilidade do fio) e pode ser decomposta em dois vetores paralelos aos eixos x e y, sendo seu vetor definido como (, ) ou (, ). Devido à condição de equilíbrio: Na direção x: (1) Na direção y: (2) Dividindo a equação (2) pela (1): (3) sendo que é conveniente definir o parâmetro . Observação: A solução da equação (3) é a função que descreve a catenária. Para resolvê-la é necessário expressá-la com apenas duas variáveis (x e y(x)) em vez de três (x, y(x) e s(x)) por isso é preciso diferenciar em relação a x e substituir o termo referente ao comprimento de arco. (4) A partir da fórmula do comprimento de arco tem-se que: (5) Substituindo a equação (5) na (4): (6) que é uma Equação Diferencial Ordinária de segunda ordem redutível à primeira ordem através de uma substituição de variáveis.
Separando as variáveis e integrando:
obtém-se:
Como no ponto P1 a derivada é positiva, o termo será positivo. Isolando , ou seja, , e integrando:
A constante C pode ser igualada a 0 dependendo da posição do eixo y, portanto: . AplicaçõesUma força aplicada em um ponto qualquer da curva é distribuída igualmente por todo material, proporcionando maior estabilidade à estrutura.[17] Por isso é amplamente utilizada na construção de arcos arquitetônicos, domos de catedrais e até iglus.[18] Geralmente, pontes pênseis assumem a forma de uma parábola, embora frequentemente esta forma seja confundida com a catenária.[10][19][20]
Ver tambémReferências
Bibliografia
|