Stelling van König (verzamelingenleer)In de verzamelingenleer, een deelgebied van de wiskunde, is de stelling van König een strikte ongelijkheid tussen twee kardinaalgetallen die respectievelijk de som en het product zijn van de termen van twee rijen kardinaalgetallen waarvan de een gedomineerd wordt door de ander. De stelling kan alleen bewezen worden onder aanname van het keuzeaxioma. StellingVeronderstel dat het keuzeaxioma geldt en laat een verzameling zijn die de indexverzameling is van de rijen kardinaalgetallen en waarvoor geldt: voor elke . Dan is Daarin is de som gedefinieerd als de machtigheid van de vereniging van de paarsgewijze disjuncte verzamelingen met machtigheid : en het product als de machtigheid van het Cartesisch product.
|
Portal di Ensiklopedia Dunia