In de meetkunde is een hyperrechthoek de generalisatie in willekeurig veel dimensies van een tweedimensionale rechthoek en een driedimensionale balk. Een hyperkubus is een speciaal geval van een hyperrechthoek.
Definitie
Een speciaal geval van een hyperrechthoek in de -dimensionale ruimte is het cartesisch product van reële intervallen met voor , dus:
.
Een willekeurige hyperrechthoek is het beeld onder een isometrische afbeelding van het speciale geval.
Voorbeelden
Voor krijgt men een interval, voor een rechthoek en voor een balk.
In het speciale geval dat alle intervallen gelijk zijn aan het eenheidsinterval, is de hyperrechthoek een eenheidshyperkubus.
.
Eigenschappen
Randelementen
Voor heeft iedere -dimensionale hyperrechthoek
hoekpunten,
ribben, die recht op elkaar staan
zijvlakken die op hun beurt weer hyperechthoeken van dimensie zijn.
Allgemeen wordt een -dimensionale hyperrechthoek door
hyperrechthoeken van dimensie begrenzt, waarbij is.
Dit is het uitgangspunt voor de bepaling van het volume van veel algemenere verzamelingen, zoals in de constructie van de -dimensionale lebesgue-maat duidelijk wordt.