Gamma-verdeling

Gamma
Kansdichtheid
Kansdichtheid voor verschillende parameterinstellingen
Verdelingsfunctie
Cumulatieve kansdichtheid voor verschillende parameterinstellingen
Parameters
Drager
Kansdichtheid
Verdelingsfunctie
Verwachtingswaarde
Modus als
Variantie
Scheefheid
Kurtosis
Entropie
Moment-
genererende functie
als
Karakteristieke functie
Portaal  Portaalicoon   Wiskunde

In de kansrekening en statistiek is de gamma-verdeling een continue kansverdeling, met twee parameters. De exponentiële verdeling, de chi-kwadraatverdeling en de Erlang-verdeling zijn speciale gevallen van de gamma-verdeling.

Definitie

De kansdichtheid van de gamma-verdeling met vormparameter en schaalparameter , ook genoteerd als -verdeling, is:

waarbij de gammafunctie is.

Eigenschappen

  • Als een -verdeling heeft, dan heeft een -verdeling, voor willekeurige .
  • Als onderling onafhankelijk en gelijkverdeeld zijn volgens de exponentiële verdeling met parameter , dan heeft een -verdeling.
  • De -verdeling is de exponentiële verdeling met parameter .
  • Als een -verdeling heeft, dan heeft een chi-kwadraatverdeling met vrijheidsgraden. Daaruit blijkt dat de -verdeling identiek is aan de chi-kwadraatverdeling met vrijheidsgraden.
  • De -verdeling is een Erlang-verdeling met parameters en . Hierin is een reëel en een geheel getal.

Toepassingen

De gamma-verdeling wordt vaak gebruikt wanneer er verschillende, onderling onafhankelijke, experimenten met een exponentiële verdeling in het spel zijn. Stel dat de wachttijd in minuten op de bus bij een halte een exponentiële verdeling met parameter volgt, dan heeft, onder bepaalde onafhankelijkheidsaannames, de wachttijd op de vijfde bus een -verdeling.