テロメアは複製時に線状染色体の末端の完全性を維持し、DNA修復装置によって二本鎖切断として認識されることがないよう保護している。MRN複合体は、主にシェルタリン(英語版)複合体のTERF2(英語版)タンパク質へ結合することで、テロメアの維持にも関与している[15]。また、NBS1はテロメラーゼによるテロメアの伸長に必要な構成要素であることが示唆されている[16]。さらに、MRN複合体の構成要素のノックダウンはヒトのテロメア末端のGオーバーハングの長さを大きく減少させ[17]、いわゆるTループと呼ばれる構造の適切な形成を阻害してテロメアを不安定化する可能性がある。がん細胞におけるALT(alternative lengthening of telomeres)機構によるテロメア伸長もMRN複合体、特にNBS1サブユニットに依存していることが示されている[18]。以上より、MRN複合体がテロメアの長さと完全性の維持に重要な役割を果たしていることが示唆される。
^Lee, JH; Paull, TT (Apr 2, 2004). “Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex.”. Science304 (5667): 93–6. doi:10.1126/science.1091496. PMID15064416.
^Lee, JH; Paull, TT (Apr 22, 2005). “ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex.”. Science308 (5721): 551–4. doi:10.1126/science.1108297. PMID15790808.
^White, MF (2011). “Homologous recombination in the archaea: the means justify the ends”. Biochem Soc Trans39 (1): 15–9. doi:10.1042/BST0390015. PMID21265740.
^Lukaszewicz, A; Howard-Till, RA; Novatchkova, M; Mochizuki, K; Loidl, J (2010). “MRE11 and COM1/SAE2 are required for double-strand break repair and efficient chromosome pairing during meiosis of the protist Tetrahymena”. Chromosoma119 (5): 505–18. doi:10.1007/s00412-010-0274-9. PMID20422424.
^Lukas, Claudia; Falck, Jacob; Bartkova, Jirina; Bartek, Jiri; Lukas, Jiri (24 February 2003). “Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage”. Nature Cell Biology5 (3): 255–260. doi:10.1038/ncb945. PMID12598907.
^ abLavin, M F (10 December 2007). “ATM and the Mre11 complex combine to recognize and signal DNA double-strand breaks”. Oncogene26 (56): 7749–7758. doi:10.1038/sj.onc.1210880. PMID18066087.
^de Jager, M; van Noort, J; van Gent, DC; Dekker, C; Kanaar, R; Wyman, C (November 2001). “Human Rad50/Mre11 is a flexible complex that can tether DNA ends.”. Molecular Cell8 (5): 1129–35. doi:10.1016/s1097-2765(01)00381-1. PMID11741547.
^Zhu, XD; Küster, B; Mann, M; Petrini, JH; de Lange, T (July 2000). “Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres.”. Nature Genetics25 (3): 347–52. doi:10.1038/77139. PMID10888888.
^Ranganathan, V; Heine, WF; Ciccone, DN; Rudolph, KL; Wu, X; Chang, S; Hai, H; Ahearn, IM et al. (26 June 2001). “Rescue of a telomere length defect of Nijmegen breakage syndrome cells requires NBS and telomerase catalytic subunit.”. Current Biology11 (12): 962–6. doi:10.1016/s0960-9822(01)00267-6. PMID11448772.
^Zhong, ZH; Jiang, WQ; Cesare, AJ; Neumann, AA; Wadhwa, R; Reddel, RR (5 October 2007). “Disruption of telomere maintenance by depletion of the MRE11/RAD50/NBS1 complex in cells that use alternative lengthening of telomeres.”. The Journal of Biological Chemistry282 (40): 29314–22. doi:10.1074/jbc.M701413200. PMID17693401.
^“The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder”. Cell99 (6): 577–87. (1999). doi:10.1016/s0092-8674(00)81547-0. PMID10612394.
^Czornak, Kamila; Chughtai, Sanaullah; Chrzanowska, Krystyna H. (December 2008). “Mystery of DNA repair: the role of the MRN complex and ATM kinase in DNA damage repair”. Journal of Applied Genetics49 (4): 383–396. doi:10.1007/BF03195638. PMID19029686.
^Kavitha, C.V.; Choudhary, Bibha; Raghavan, Sathees C.; Muniyappa, K. (September 2010). “Differential regulation of MRN (Mre11–Rad50–Nbs1) complex subunits and telomerase activity in cancer cells”. Biochemical and Biophysical Research Communications399 (4): 575–580. doi:10.1016/j.bbrc.2010.07.117. PMID20682289.
^Williams, BR; Mirzoeva, OK; Morgan, WF; Lin, J; Dunnick, W; Petrini, JH (16 April 2002). “A murine model of Nijmegen breakage syndrome.”. Current Biology12 (8): 648–53. doi:10.1016/s0960-9822(02)00763-7. PMID11967151.
^Gładkowska-Dura, M; Dzierzanowska-Fangrat, K; Dura, WT; van Krieken, JH; Chrzanowska, KH; van Dongen, JJ; Langerak, AW (November 2008). “Unique morphological spectrum of lymphomas in Nijmegen breakage syndrome (NBS) patients with high frequency of consecutive lymphoma formation.”. The Journal of Pathology216 (3): 337–44. doi:10.1002/path.2418. PMID18788073.
^Steffen, J; Maneva, G; Popławska, L; Varon, R; Mioduszewska, O; Sperling, K (15 December 2006). “Increased risk of gastrointestinal lymphoma in carriers of the 657del5 NBS1 gene mutation.”. International Journal of Cancer119 (12): 2970–3. doi:10.1002/ijc.22280. PMID16998789.
^ abGao, R; Singh, R; Kaul, Z; Kaul, SC; Wadhwa, R (June 2015). “Targeting of DNA Damage Signaling Pathway Induced Senescence and Reduced Migration of Cancer cells.”. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences70 (6): 701–13. doi:10.1093/gerona/glu019. PMID24747666.
^Voulgari, A; Pintzas, A (December 2009). “Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic.”. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer1796 (2): 75–90. doi:10.1016/j.bbcan.2009.03.002. PMID19306912.
^Lajud, SA; Nagda, DA; Yamashita, T; Zheng, J; Tanaka, N; Abuzeid, WM; Civantos, A; Bezpalko, O et al. (15 December 2014). “Dual disruption of DNA repair and telomere maintenance for the treatment of head and neck cancer.”. Clinical Cancer Research20 (24): 6465–78. doi:10.1158/1078-0432.CCR-14-0176. PMID25324139.
^Farmer, H; McCabe, N; Lord, CJ; Tutt, AN; Johnson, DA; Richardson, TB; Santarosa, M; Dillon, KJ et al. (14 April 2005). “Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy.”. Nature434 (7035): 917–21. doi:10.1038/nature03445. PMID15829967.
^Skvortsov, S; Debbage, P; Lukas, P; Skvortsova, I (April 2015). “Crosstalk between DNA repair and cancer stem cell (CSC) associated intracellular pathways.”. Seminars in Cancer Biology31: 36–42. doi:10.1016/j.semcancer.2014.06.002. PMID24954010.
^Kuroda, S; Urata, Y; Fujiwara, T (2012). “Ataxia-telangiectasia mutated and the Mre11-Rad50-NBS1 complex: promising targets for radiosensitization.”. Acta Medica Okayama66 (2): 83–92. PMID22525466.
^Chang, F; Lee, JT; Navolanic, PM; Steelman, LS; Shelton, JG; Blalock, WL; Franklin, RA; McCubrey, JA (March 2003). “Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy.”. Leukemia17 (3): 590–603. doi:10.1038/sj.leu.2402824. PMID12646949.