^ ab“Redistribution of BRCA1 among four different protein complexes following replication blockage”. J. Biol. Chem.276 (42): 38549–54. (2001). doi:10.1074/jbc.M105227200. PMID11504724.
^ ab“Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95”. J. Biol. Chem.273 (34): 21447–50. (1998). doi:10.1074/jbc.273.34.21447. PMID9705271.
^“Mre11 and Ku70 interact in somatic cells, but are differentially expressed in early meiosis”. Nat. Genet.23 (2): 194–8. (1999). doi:10.1038/13821. PMID10508516.
^“Nibrin forkhead-associated domain and breast cancer C-terminal domain are both required for nuclear focus formation and phosphorylation”. J. Biol. Chem.278 (24): 21944–51. (2003). doi:10.1074/jbc.M211689200. PMID12679336.
^“Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres”. Nat. Genet.25 (3): 347–52. (2000). doi:10.1038/77139. PMID10888888.
“The Mre11 complex and the metabolism of chromosome breaks: the importance of communicating and holding things together”. DNA Repair (Amst.)3 (8–9): 845–54. (2005). doi:10.1016/j.dnarep.2004.03.014. PMID15279769.
Carney JP; Maser RS; Olivares H et al. (1998). “The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response”. Cell93 (3): 477–86. doi:10.1016/S0092-8674(00)81175-7. PMID9590181.
“The 3' to 5' exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks”. Mol. Cell1 (7): 969–79. (1998). doi:10.1016/S1097-2765(00)80097-0. PMID9651580.
“Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95”. J. Biol. Chem.273 (34): 21447–50. (1998). doi:10.1074/jbc.273.34.21447. PMID9705271.
Kim KK; Shin BA; Seo KH et al. (1999). “Molecular cloning and characterization of splice variants of human RAD50 gene”. Gene235 (1–2): 59–67. doi:10.1016/S0378-1119(99)00215-2. PMID10415333.
Zhong Q; Chen CF; Li S et al. (1999). “Association of BRCA1 with the hRad50-hMre11-p95 complex and the DNA damage response”. Science285 (5428): 747–50. doi:10.1126/science.285.5428.747. PMID10426999.
Gatei M; Young D; Cerosaletti KM et al. (2000). “ATM-dependent phosphorylation of nibrin in response to radiation exposure”. Nat. Genet.25 (1): 115–9. doi:10.1038/75508. PMID10802669.
Zhu XD; Küster B; Mann M et al. (2000). “Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres”. Nat. Genet.25 (3): 347–52. doi:10.1038/77139. PMID10888888.
Paull TT; Rogakou EP; Yamazaki V et al. (2001). “A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage”. Curr. Biol.10 (15): 886–95. doi:10.1016/S0960-9822(00)00610-2. PMID10959836.
“RINT-1, a novel Rad50-interacting protein, participates in radiation-induced G(2)/M checkpoint control”. J. Biol. Chem.276 (9): 6105–11. (2001). doi:10.1074/jbc.M008893200. PMID11096100.
“Redistribution of BRCA1 among four different protein complexes following replication blockage”. J. Biol. Chem.276 (42): 38549–54. (2001). doi:10.1074/jbc.M105227200. PMID11504724.
“Checkpoint activation in response to double-strand breaks requires the Mre11/Rad50/Xrs2 complex”. Nat. Cell Biol.3 (9): 844–7. (2001). doi:10.1038/ncb0901-844. PMID11533665.
de Jager M; van Noort J; van Gent DC et al. (2002). “Human Rad50/Mre11 is a flexible complex that can tether DNA ends”. Mol. Cell8 (5): 1129–35. doi:10.1016/S1097-2765(01)00381-1. PMID11741547.