魔六角陣魔六角陣(まろっかくじん)は、魔方陣の六角形版で、左斜め・右斜め・横のいずれの方向の和も等しくなるように 1 から始まる連続した数字をあてはめたものである。
魔六角陣は、大きさ1のものと大きさ3のものの二つしか存在しない。また、鏡像・対称なものを除くと共に1種類しか数字の当てはめ方が存在しないことが知られている。 魔六角陣は多くの人によって再発見されている。現在判明している最も古い発見者はエルンスト・フォン・ハッセルベルグで、1887年に発表している。 証明魔六角陣の大きさが1と3のみであるという証明を以下に示す。 まず、各列の和を M とする。1辺が n である六角形に入る数字は 1~3n(n-1)+1 なので、入る数字の合計 s は となる。列の数は 2n-1 なので M は で表される。この式を変形すると この式の両辺は整数であるため、 5/(2n-1) は整数でなければならない。これが整数になるのは 2n-1 が 5 の約数であるときである。よって n=1,3 である。 大きい六角陣魔六角陣は大きさ1と3のものしか作れないが、入れる数字の条件をゆるめて、必ずしも1から始まるのではない連続する整数をあてはめることにすれば、さらに大きいものを作ることができる。 Zahray Arsen は、この条件の変更により大きさ4以上の六角陣を作成している。以下に大きさ4,5の例を挙げる。
大きさ4のものは 3 から 39 までの数を用いて和を 111 にしている。大きさ5のものは 6 から 66 までの数を用いて和を 244 にしている。
2006年3月に Arsen は図のような大きさ7のものを発表している。この図は 2 から 128 までの数を用いて各列の和を 635 にしている。 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia