無条件収束無条件収束(むじょうけんしゅうそく,英: unconditional convergence)は代数的な対象(和)に関連した位相的性質(収束性)である。それは可算個の元の級数に対する収束の概念の任意に多くの級数への拡張である。大部分はバナッハ空間において研究されている。 定義X を線型位相空間とする.I を添え字集合とし,すべての i ∈ I に対して xi ∈ X とする. 級数 が x ∈ X に無条件収束するとは, ことをいう。 別の定義無条件収束はしばしば同値な方法で定義される:級数が無条件収束するとは,任意の列 で なるものに対し,級数 が収束することをいう. 任意の絶対収束級数は無条件収束するが,逆は一般には成り立たない:X が無限次元のバナッハ空間のとき,Dvoretzky–Rogersの定理の定理により,この空間には無条件収束するが絶対収束しない級数が必ず存在する.しかしながら,X = Rn のときは,リーマンの級数定理によって,級数 が無条件収束することと絶対収束することは同値である. 関連項目参考文献
この記事は、クリエイティブ・コモンズ・ライセンス 表示-継承 3.0 非移植のもと提供されているオンライン数学辞典『PlanetMath』の項目Unconditional convergenceの本文を含む |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia