次数直径問題グラフ理論において次数直径問題とは、最大次数がdで直径がkのグラフのうち頂点数が最大となるグラフGを見つけよ、というものだ。Gの頂点数はムーア・バウンドによって上から抑えられる。1<kで2<dのときムーアバウンドに一致するグラフ(ムーアグラフ)で構成できているものはピーターセングラフとホフマンシングルトングラフである。k=2でd=57のときにムーアバウンドに一致するグラフが存在しうるが、いまだ構成されておらず未解決の問題である。一般的に最大次数と直径が与えられたときの最大頂点数はムーアバウンドよりも小さくなる。 ムーアバウンド最大次数dと直径kのグラフのうち最大の頂点数を とする。 となるはムーアバウンドと呼ばれ以下のようになる。 ムーアバウンドに到達するグラフは非常に少ないことが示されている。の漸近的な振る舞いは となる。 について考えよう。任意のkに対して と予想されている。 と については既に証明されている。また一般的に が成り立つ。 関連項目
参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia