有限交叉性数学において、集合族が有限交叉的又は有限交叉性(ゆうげんこうさせい、finite intersection property)を持つとは、任意の有限部分族が空でない共通部分を持つことである。 更に集合族が強有限交叉性[訳語疑問点](きょうゆうげんこうさせい、strong finite intersection property)を持つとは、任意の有限部分族を取ったとき、その共通部分が無限集合になることをいう[要出典]。 叉は常用漢字でないため有限交差性と書かれることも多い。 定義集合 X 上の集合族 S が有限交叉的とは次を満たす事を言う。
集合 X 上の集合族 S が強有限交叉的とは次を満たす事を言う[要出典]。
強有限交叉性は有限交叉性より真に強い性質である。 例
関連項目 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia