最大独立集合問題最大独立集合問題(さいだいどくりつしゅうごうもんだい)は、グラフ理論において、与えられたグラフ G(V,E) に対して、頂点集合 V'⊆V のうち V' 内の頂点間に枝が存在しないようなもの(独立集合)で大きさが最大のものを求める問題。最大安定集合問題とも言う。この問題は、NP困難であることが知られている。 この問題は、補グラフに対する最大クリーク問題と等価である。また、独立集合に含まれない頂点は頂点被覆をなし、逆も成り立つので、最小頂点被覆問題とも等価である。 近似アルゴリズムについても、基本的に最大クリーク問題と同じである。グラフの頂点数を n とするとき、近似度 O(n / (log n)2) が達成されている。また、P=NP が成り立たないとき、任意の ε>0 について、近似度 n(1/2-ε) の近似アルゴリズムが存在しないことが示されている。NP=ZPPが成り立たない場合、近似度 n(1-ε) の近似アルゴリズムが存在しないことも示されている。 グラフの最大次数を制限した場合は、以下の結果が知られている。
関連項目外部リンク |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia