差分多項式数学の複素解析の分野における一般差分多項式列(いっぱんさぶんたこうしきれつ、英: general difference polynomials)とは、シェファー多項式列のある特別な部分クラスに属する多項式列であり、ニュートン多項式列、セルバーグ多項式列 (Selberg's polynomials) およびスターリング補間多項式列 (Stirling interpolation polynomials) を特殊な場合として含むものである。 定義適当な定数 β に対して、一般差分多項式列は で与えられる。ここで は二項係数である。
移動差分解析関数 に対し、その移動差分 (moving difference) を で定める。ここで は前進差分作用素である。このとき、f がある特別な総和可能性 (summability) についての条件を満たすなら、それは次のような多項式表現を許す。 この列の総和可能性(すなわち、収束)に関する条件は、複雑な問題である。一般に、その必要条件は解析関数が指数型よりも小さいことであるとされる。総和可能性の条件については、Boas & Buck (1964) において詳細に議論されている。 母関数一般差分多項式に対する母関数は、次で与えられる。 この母関数には、次のような一般化アペル表現が存在する。 ここで 、、 および とされる。 関連項目参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia