密着閉包数学の可換環論における密着閉包(みっちゃくへいほう、英: tight closure)とは、正標数の環のイデアルに対して定義されるある操作である。メルビン・ホッシュター[訳語疑問点]とクレイグ・ハネク[訳語疑問点]によって考案された[1]。 を可換なネーター環で標数 の体(したがって は素数)を含むものとする。 を のイデアルとする。 の密着閉包 とは、 を含む のイデアルで次のように定義されるものである[2]。
ここで は の元の ベキで生成される のイデアルで、 の 次フロベニウス冪[訳語疑問点]という。 が成り立つとき、このイデアルは密着的閉(tightly closed)という[2]。 全てのイデアルが密着的閉である環は弱 正則(weakly -regular, フロベニウス正則の意)という[2]。また、環の任意の局所化が弱 正則であるとき 正則という[2][3]。 かつては密着閉包の操作と局所化が交換可能かどうかが大きな未解決問題だったが、Brenner & Monsky (2010) が反例を見つけた。しかし、全ての弱 正則環が 正則かどうか、つまり環の全てのイデアルが密着的閉ならばその環の任意の局所化の任意のイデアルもまた密着的閉かどうか、という問題はまだ未解決である[3]。 脚注
参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia