実効記述集合論実効記述集合論(じっこうきじゅつしゅうごうろん、Effective descriptive set theory)は記述集合論で細字の定義をもつ集合や実数を扱う分野である; それはすなわち、定義にいかなる実数パラメータも要さないものである (Moschovakis 1980)。つまり実効記述集合論は、記述集合論と再帰理論を組み合わせたものである。 構成実効ポーランド空間→詳細は「実効ポーランド空間」を参照
実効ポーランド空間とは計算可能な表現(en:computable presentation)を持つ完備可分距離空間のことである。このような空間は、実効記述集合論と構成的解析学の両方で研究されている。 特に、実数直線、カントール集合、ベール空間などのポーランド空間の標準的な例は全て実効ポーランド空間である。 算術的階層→詳細は「算術的階層」を参照
算術的階層、またはクリーネ-モストフスキ階層は、ある集合を、それらを定義する式の複雑さに基づいて分類する。そのような分類を受けた集合は「算術的」と呼ばれる。 より正式には、算術的階層は一階算術の言語における論理式に分類を割り当てる。分類は自然数n(0を含む)に対してとと表される。ここでのギリシャ文字は細字記号であり、論理式に集合パラメータが含まれていないことを意味する。 論理式 が有界量化子のみを持つ論理式に論理的に同値であるとき は分類 と を両方割り当てる。 0より大きい各自然数 n に対する , は次のように帰納的に定義される:
参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia