図法幾何学図法幾何学(ずほうきかがく、英: Descriptive geometry)は3次元と2次元との図形変換を扱う学問分野である[1]。図学(ずがく)とも[2]。 概要この世界は3次元空間である一方、ヒトはそれを2次元的に見てそこから空間を感じ取る。また物体は上下左右前後の側面を2次元的に設計することで3次元形状をおこせる。このような3次元と2次元との間の図形の変換は様々な分野に登場し、これを研究する学問を図法幾何学(図学)という[1]。 図学の研究成果は工学、建築、デザイン、アートで応用される[3][4]。製図における透視投影・平行投影、絵画における線遠近法はその代表的な応用例である。 図法幾何学の理論的基礎は投影である。投影により仮想物体を3次元でモデル化し2次元で描画できる。これにより仮想物体のすべての幾何学的側面は、真の形状(サイズ/スケール)で説明され、空間内のある位置から見たように描画できる。 投影に関する最初期に著名な出版物はアルブレヒト・デューラー『Underweysung der Messung mit der Zirckel und Richtscheyt』である。ガスパール・モンジュは「図法幾何学の父」とみなされている。彼は最初に軍事要塞の草案者として働いていた1765年に、幾何学的問題を解決するための技術として開発し発表した[5]。 手順
このようにこの幾何学であれば、線の真の長さ(すなわち、フルサイズ、短縮されていないもの)と、四角形の頂点、ラインのポイントビュー(端面図)、平面の真の形状(すなわち、短縮されていないフルサイズの縮尺)、および平面のエッジビュー(すなわち、視線を有する平面のビューが平面の真の形状を生成するための視線と関連する視線に対して垂直である)で表される。これらはしばしば、後続ビューの投影方向を決定するのに活用。90°の踏み込みプロセスによって、線のポイントビューから任意の方向に投影すると、その真の長さが得られ、ビュー; 真の長さのラインビューに平行方向で投影すると、そのポイントビューが得られ、プレーン上の任意のラインのポイントビューを投影すると、プレーンのエッジビューが得られる。平面のエッジビューに垂直な方向に投影すると、真の形状(縮尺通り)のビューが得られる。 ヒューリスティック画法幾何学を研究することには発見的価値がある。それは、視覚化と空間分析能力が促進されるだけでなく、解決のための幾何学的問題を最良に提示するため視覚方向を認識する直感的な能力を促進する。 代表的な例: 表示する最良の方向
正投影、逐次投影に類似したコンピュータモデリングビューを提示するための標準は、まだ採用されていない。そのような候補の1つを、下のイラストに示す。イラストの画像は、3次元のエンジニアリング・コンピュータグラフィックスを使用して作成された。 3次元のコンピュータモデリングは、「チューブの後ろに」仮想空間を生成し、この仮想空間内の任意の方向からモデルの任意のビューを生成することができる。これは、隣接する正射投影図を必要とせずに行うので、Descriptive Geometryの踏み越え手順を廃止したように見えうる。が、図学が3つの正法的または許容イメージの科学であるので、より多くの次元空間、平面上に、そしてそれがコンピュータモデリングの可能性を強化するために、必要不可欠な研究である。 一般的な解決策問題に対しすべて可能な解決策を含む説明的な幾何学範囲の一連の解決策において単一の3次元オブジェクト(通常は円錐)で表され、その要素の方向は、無限の数の解のビューの任意のビュー(投影)の方向となる。 たとえば、一般的な位置(飛行中のロケットなど)の2つの不等長の斜め線が現れるような一般的な解を見つけるには:
これらの例では、それぞれの所望の特徴的な解についての一般的な解は円錐であり、その各要素は、無限の解のビューの1つを生成する。2つの円錐の間の2つの交点要素(円錐が接している場合には1つの要素)のいずれかの方向に突出し、上述のような2つ以上の特性が所望されている(解決策が存在する)場合、ソリューションビュー、円錐が交差しない場合、解は存在しない。以下の例は使用される記述的な幾何学的原理を示すために注釈が付けられている。TL =真の長さ。EV =エッジビュー。 また、以下の図1から3は、(1)画法幾何学、一般的解、および(2)同時に、正立法、多視点、レイアウト形式で潜在的に提示される標準解を示す。 潜在的な標準は、2つの隣接する標準的な正法ビュー(ここでは、正面と上面)と標準の「折りたたみ線」を使用。ソリューションビューに到達するためには、標準的な2ステップのシーケンスで、オブジェクトの周りを90°回りに「回路的にステップ」する必要がないので(この場合、ソリューションビューに直接進むことができる)、この短いプロトコルがレイアウトのために説明される。1ステッププロトコルが2ステッププロトコルに置き換わる場合、「二重折り畳み」ラインが使用される。言い換えれば、二重線を横切ったとき、彼は90°の旋回をしていないが、正反対の回転は解決法のビューに直接向いている。大抵のエンジニアリングコンピュータグラフィックスパッケージは、ガラスボックスモデルの6つの主なビューと等角図を自動的に生成する。 脚注注釈出典
参考文献
関連項目 |