周期的境界条件
周期的境界条件(しゅうきてききょうかいじょうけん、英語: periodic boundary condition, PBC)は、境界条件の一つ。周期境界条件とも言う。 1次元の場合1次元の場合、定義域の幅の関数が周期的境界条件を持っているならば、 である。 結晶の例周期的境界条件はしばしば並進対称性をもつ系を考察する場合に用いられる。 例えば単位胞の大きさが、系の大きさがである1次元の結晶を考える場合に、波動関数に対して次のような境界条件が課せられる。 この時はの整数倍で無くてはならない。これをボルン=フォン・カルマン境界条件という。 周期的境界条件を課すことで、波動関数をの間で自乗可積分にすることができるため規格化できるようになることがある。 このような人工的な境界条件の設定は表面での関数に対する拘束が、考察の対象である関数の大域的な性質に寄与しないであろうと考えられる場合によく用いられる。 そのような仮定はの極限の考察と組み合わせられることが多い。 N次元の場合一般の次元Nに対しては、線形独立なN個のベクトルを用いて、 がなす胞を定義域とする関数に対する周期境界条件は のように表される。 この場合も基本並進ベクトルをもつ結晶を考えるのであれば、 がなす胞は 基本並進ベクトルがなす単位胞を敷き詰めることが出来なくてはならない。 周期的境界条件が重要な計算手法関連用語 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia