前向き連鎖前向き連鎖(まえむきれんさ、Forward Chaining)は、(人工知能において)推論規則を使う時の二種類の主要な推論手法のひとつである。もう一方は後向き連鎖である。 前向き連鎖は使用可能なデータからスタートし、推論規則を使って最適解に達するまでさらにデータを(例えばエンドユーザーから)引き出していく。前向き連鎖を使う推論エンジンは、推論規則を検索し、条件部(IF節)が真であることが分かっている規則を探し出す。見つけた規則の帰結部(THEN節)は、データセットへの新たな情報として追加される。 例として、ペットのフリッツの体色を決定することを目標とし、鳴くこと(訳注: "croak" はガーガー、ゲロゲロ鳴くこと)とハエを食べることを事実とする。ルールベースに以下の規則があるとする。
事実(フリッツが鳴くこととハエを食べること)が知識ベースに加えられ、IF節がそれに一致する規則をルールベースから探す。1つめの規則が見つかり、その前提は真であるため、結論部分(フリッツはカエルである)も知識ベースに加えられる。さらにルールベースが検索され、2つめの規則が新たに知識ベース内の事実と一致し、その結論部分(フリッツは緑色)が知識ベースに加えられる。その後、さらなる一致は見つからないが、当初の目標であったフリッツの体色を推論することができた。 前向き連鎖の推論はしばしばデータ駆動型と呼ばれる。一方、後向き連鎖はゴール駆動型と呼ばれる。前向き連鎖のアプローチはCLIPSなどのエキスパートシステムで普通に使用されている。前向き連鎖の利点として、新たなデータ(事実)を得ることで新たな推論が開始できるため、後向き連鎖に比較して変動のある状況に対応しやすいという点が挙げられる。 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia