二次錐計画問題二次錐計画問題 (英:Second-order cone programming, SOCP) は次の形をした凸最適化問題を指す。
ただし、問題中に現れる, and はパラメータ定数で、が最適化変数である[1]。 この式においてである場合には、二次錐計画問題は単なる線形計画問題となる。また、である場合には二次制約の二次計画問題となる。また二次錐計画問題は制約条件を線形行列不等式として書き直すことで半正定値計画問題の一種とみなすこともできる。二次錐計画問題は内点法による効率的な解法が存在することが知られている。 概要二次錐計画問題は、名前の通り実行可能領域が二次錐であるような凸最適化問題を指す。もっとも単純な二次錐は n 次元空間上において次のような集合としてあらわされる。 より一般的な形として と表されることがあるが、これは と同値な条件であり、錐体を表す集合であることがわかる。この一般的な錐体の定義により、上のような二次錐計画問題が定義される。 二次錐計画問題には一般的な主双対内点法による解法以外にもバリア関数法などの解法が用いられる。バリア関数法では、上記の凸最適化問題を
という形に書き換え、これをニュートン法などにより最小化することで各繰り返しにおけるステップ幅を求める[1]。 例: 二次制約の問題次の二次不等式制約を考える。 この不等式は次のように変形することで錐形の実行可能領域を表す二次錐制約とみなすことができる。 例: 確率計画確率的線形計画問題とは次のような不等式制約を含む線形核問題を指す。
この式においては平均、共分散の正規乱数を要素とするベクトルであり、である。この問題は次の二次錐計画問題と同値とみなすことができる。
二次錐計画問題のプログラム
参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia