ヴィヴィアーニの定理ヴィヴィアーニの定理(ヴィヴィアーニのていり、Viviani's theorem)は正三角形に関する幾何学の定理である。名前はイタリアの数学者ヴィンチェンツォ・ヴィヴィアーニに由来している[1][2]。 定理正三角形内部の点から3辺に下ろした垂線の長さの和は一定である。 図1では s+t+u がこれにあたる。 証明内部の点を P と置くと、面積に関して S(⊿ABC)=S(⊿ABP)+S(⊿BCP)+S(⊿CAP) が成り立つ。これを変形することで容易に証明できる。 拡張この定理は、任意の正多角形においても成り立つ。 正多角形だけでなく、条件を緩めた
においても成り立つ。 3次元へでは、正多面対について内部の点から各面に下ろした垂線の長さの和は一定である[3]。 出典
外部リンク
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia