ヤング・ラプラスの式ヤング・ラプラスの式とは、曲率をもつ気相・液相の界面において、2相間の圧力差と界面の曲率を関連付ける方程式である[1]。表面張力をγ、界面の2つの曲率半径をR1, R2とすると、圧力差Δp(ラプラス圧もしくは毛管圧と呼ばれる)は次式で表される: 表面張力は界面を最小化するようにはたらくため、圧力差がなければ平面となる。したがって界面に曲率を持たせるためには2相間に圧力差がなければならない。 ラプラス圧をΔp := pliquid - pgasと定義するとき、曲率は界面が液相側から気相側に向かって凸に曲がっている場合を正とする。たとえば気体中に球形の液滴がある場合、2つの曲率はともに正でありΔp > 0、すなわち圧力は液滴内部のほうが大きい。鞍点のように2つの曲率が異符号である場合、界面内外のどちらの圧力が大きいかはR1, R2による。 2つの曲率は主曲率にとられることが多いが、任意の直交する、界面の法線ベクトルを含む2平面に対してとることができる。これは微分幾何学により、2つの曲率半径が互いに直交する面に対して決定されていれば1/R1 + 1/R2の値は一定であることが示されているためである。 名称はトマス・ヤングとピエール=シモン・ラプラスにちなむ。 具体例水中にある半径Rの気泡の内部の圧力は、外部の圧力に比べてΔp = 2γ/Rだけ大きい。R = 1 mm とするとΔp = 144 Pa であり、R = 10 nm のときΔp = 1.44×107 Pa である。 脚注
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia