ヤコビ恒等式数学におけるヤコビ恒等式(ヤコビこうとうしき、英語: Jacobi identity)とは、二項演算に対して考えられる性質の一つ。名前はドイツの数学者カール・グスタフ・ヤコブ・ヤコビに由来する。ヤコビは1862年の微分方程式に関する論文の中でポアソン括弧に対するヤコビ恒等式を導いた[1][2]。 定義集合 に二項演算 と可換かつ単位元 を持つ二項演算 が定義され、この について、 が成立するとき、 はヤコビ恒等式を満たすという。 式の解釈が によって加法群の構造を持つとしよう。このときヤコビ恒等式は という形で書くことができる。左辺を x に対する b * c の随伴作用と解釈すると、右辺はそれを b の作用と c の作用で逐次的に行って実現するものと解釈することができる。 例
三次元のベクトル空間における外積(クロス積)はヤコビ恒等式を満たす。
リー環における積演算である括弧積はヤコビ恒等式を満たす。 括弧積を随伴作用と考えれば、環上の微分におけるライプニッツ則として捉えることができる。すなわち、 と表せば、上述のヤコビ恒等式は であり、ライプニッツ則として解釈できる。
脚注出典参考文献論文
関連記事 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia