三角形の2辺に接する円の中心は、角の二等分線(図の緑色の線)上にある。角の2等分線によって三角形は3つの部分に分けられる。この小さい三角形それぞれの内接円(図の点線の円)を描く。これらの円の2つを通る共通内接線は2本ずつあるが、角の2等分線でないものを図に赤の点線で示した。三角形の3辺を a, b, c とし、赤い点線を x, y, z とする。ここで、x は a に接しない2円の共通接線とし、y, z も同様とする。3つの四角形 abyx, aczx, bczy の内接円が求めるマルファッティの円である[6]。共通接線が辺と交わる点は、もう1つの円と辺の接点でもある。その点が角の2等分線に対して対称の位置にある点は、内接円の中心同士を結ぶ線上にある[7]。
半径の大きさ
マルファッティの円の半径は、3辺の長さを a, b, c、内接円の半径を r、周長の半分を s = (a + b + c)/2、内心から長さ a, b, c の辺に向かい合う各頂点までの距離をそれぞれ d, e, f としたとき、以下の式で表すことができる。
与えられた三角形 ABC のマルファッティの円同士の接点を D, E, F とする。ただし、D を BC に接する2円の接点とする。このとき AD, BE, CF は1点で交わる。この交点を「第1安島-マルファッティ点」と呼ぶ。三角形の3つの傍心を IA, IB, IC としたとき、IAD, IBE, ICF の交点を「第2安島-マルファッティ点」と呼ぶ[9][10]。
Gatto, Romano (2000), “The debate about methods and Vincenzo Flauti's challenge to the mathematicians of the Kingdom of Naples”, Società Nazionale di Scienze, Lettere e Arti in Napoli. Rendiconto dell'Accademia delle Scienze Fisiche e Matematiche. Serie IV67: 181–233, MR1834240.
Hitotumatu, Sin (1995), “The Malfatti problem” (Japanese), The state of the art of scientific computing and its prospects, II, Sūrikaisekikenkyūsho Kōkyūroku, 915, pp. 167–170, MR1385273.
Melissen, J.B.M. (1997) (PhD thesis), Packing and Covering with Circles, Utrecht University.
Miller, W. J. C., ed. (1875), “Problem 4331”, Mathematical questions with their solutions, from the "Educational times", Hodgson, p. 70--71, http://dbooks.bodleian.ox.ac.uk/books/PDFs/600030296.pdf. Proposed by Artemas Martin; solved by the proposer and by Asher B. Evans; compare Martin's Question 4401,also in this volume, pp. 102-103, again solved by Evans and Martin. Note further that Martin had asked for a geometrical solution in The Lady's and Gentleman's Diary for 1869 (so appearing in late 1868), with solution in the LDG for the following year, pp. 89-90. Versions of the problem then appear from 1879 in The Mathematical Visitor, edited by Martin. A solver of the first of these, Marcus Baker, proposed the second; he also presented a talk surveying the subject to the Philosophical Society of Washington in 1877 that then appeared in the Society's Bulletin. This survey is perhaps the first in English to cite the work of Adolph Gustav Quidde, but copied in from a survey in German.
Simi, A.; Toti Rigatelli, L. (1993), “Some 14th- and 15th-century texts on practical geometry”, Vestigia mathematica, Amsterdam: Rodopi, pp. 453–470, MR1258835.
Takeshima, Taku; Anai, Hirokazu (1996), “Computer algebra applied to Malfatti's problem of constructing three tangent circles inside a triangle—the construction of towers over the field of rational functions” (Japanese), Studies in the theory of computer algebra and its applications, Sūrikaisekikenkyūsho Kōkyūroku, 941, pp. 15–24, MR1410316.
Wells, David (1991), “Malfatti's problem”, The Penguin Dictionary of Curious and Interesting Geometry, New York: Penguin Books, pp. 145–146, ISBN0-14-011813-6.
Zalgaller, V.A.; Los', G.A. (1994), “The solution of Malfatti's problem”, Journal of Mathematical Sciences72 (4): 3163–3177, doi:10.1007/BF01249514.