上で述べた方式はすべて一度、もしくは限られた回数の署名であるが、Moni Naor(英語版)とモチ・ユング(英語版) は1989年にUOWHF(英語版)を発明し、何度でも使うことのできるハッシュ署名 (the Naor-Yung scheme)[26]を設計した(the first such signature that does not require trapdoor properties)。
符号暗号
これにはマックエリス暗号、Niederreiter暗号システム(英語版) やそれに関連するCourtois, Finiasz and Sendrier署名方式など、誤り訂正符号に依拠した暗号方式が含まれる。オリジナルなマックエリス暗号はランダムなGoppa符号(英語版) を使っており、これは40年以上もの時間と研究を経た今でも安全と考えられている。 しかし、鍵サイズを減らすために符号に構造を追加しようとして作られた、異なるバリエーションのマックエリス暗号は、その多くが安全ではないことが分かっている[27]。 欧州委員会の支援するThe Post Quantum Cryptography Study Groupは、量子コンピュータの攻撃に長時間耐えることのできる暗号システムの候補として、マックエリス公開鍵暗号を推薦している[19]。
Ring-LWEのあるバージョンには、最短の格子を求める最短ベクトル問題(英語版)(SVP)のセキュリティーに帰着できるsecurity reductionがある。最短ベクトル問題はNP困難であることが知られている[34]。Güneysu、Lyubashevsky、Pöppelmannによる論文で定義されているLyubashevsky's ring-LWE署名[16]など、証明可能なsecurity reductionのあるring-LWEシステムもある。GLYPH署名方式はGüneysu、Lyubashevsky、Pöppelmann (GLP)署名の発表後の研究結果を考慮に入れた、GLP署名のバリエーションである。もう一つのRing-LWE署名はRing-TESLAである[35]。LWEの「脱ランダム化されたバリエーション」であるLearning with Rounding (LWR)は「速度(by eliminating sampling small errors from a Gaussian-like distribution with deterministic errors) と帯域の向上」がなされている[36]。LWEが下位ビットを隠すために小さなエラーを加えているのに対して、LWRはそのために丸め操作を利用している。
格子暗号 – NTRU, BLISS
NTRU暗号方式とBLISS[37]署名は、格子における最近ベクトル問題(CVP)と関係しているが、おそらく等価ではないと考えられている。CVPはNP困難であることが知られている。欧州委員会から支援を受けているThe Post Quantum Cryptography Study Groupは、長期間利用できる暗号方式として、オリジナルのNTRUよりも、security reductionのあるStehle–SteinfeldバージョンのNTRUを研究すべきだと提唱している[38]。
多変数暗号 – Unbalanced oil and vinegar
Unbalanced oil and vinegar(英語版)暗号方式は有限体上の多変数多項式に基づく非対称的な暗号プリミティブである。Bulygin、Petzoldt、Buchmannらは一般的な多変数二次UOVシステムがNP困難な多変数二次方程式問題に換算されることを示している。[39]
欧州委員会から支援を受けているThe Post Quantum Cryptography Study Groupは、量子コンピュータの攻撃を長期間防ぐことのできる方式としてMerkle署名方式を推薦している[19]。
符号暗号 – マックエリス暗号
マックエリス暗号方式は、シンドローム復号問題(SDP)にセキュリティ的に換算できる。SDPはNP困難であることが知られている[42]。欧州委員会から支援を受けているThe Post Quantum Cryptography Study Groupは、この暗号方式を量子コンピュータの攻撃を長期間防ぐことのできる方式として推薦している。[19]
Hirschhorn、Hoffstein、Howgrave-Graham、Whyteらは、128bitのセキュリティレベル(英語版)のNTRU暗号にはkey represented as a degree 613 polynomial with coefficientsを用いることを推奨している。これは6130bitの公開鍵となる。これに対応する秘密鍵は6743bitである[45]。
マックエリス暗号で128bitのセキュリティレベルを得るために、The European Commissions Post Quantum Cryptography Study groupは、最低 の長さ、の次元、 のエラーを訂正できるゴッパ符号を用いることを推奨している。これらのパラメータによって、マックエリス暗号の公開鍵はのnon-identity partは
bitの組織生成行列となる。The corresponding private key, which consists of the code support with elements from and a generator polynomial of with coefficients from ,will be 92,027 bits in length[19].
The group is also investigating the use of Quasi-cyclic MDPC codes of length at least and dimension at least , and capable of correcting errors. With these parameters the public key for the McEliece system will be the first row of a systematic generator matrix whose non-identity part takes bits. The private key, a quasi-cyclic parity-check matrix with nonzero entries on a column (or twice as much on a row), takes no more than bits when represented as the coordinates of the nonzero entries on the first row.
Barreto et al. recommend using a binary Goppa code of length at least and dimension at least , and capable of correcting errors. With these parameters the public key for the McEliece system will be a systematic generator matrix whose non-identity part takes bits.[60] The corresponding private key, which consists of the code support with elements from and a generator polynomial of with coefficients from
The Open Quantum Safe (OQS) プロジェクトは2016年後半に始まった、耐量子暗号の開発と試作を目的とするプロジェクトである[65][66]。 liboqsという一つのライブラリに、現在のポスト量子暗号方式を統合することを目標としている[67]。 liboqsは耐量子暗号アルゴリズムの、オープンソースのC言語ライブラリである。初期は鍵交換アルゴリズムが中心であったが、現在はその他の暗号方式も含んでいる。liboqsはポスト量子鍵交換アルゴリズムのための一般的なAPIを提供し、 様々な実装を集める。 liboqsはまた、ポスト量子暗号の実装を比較するためのテストハーネスやベンチマークのルーチンを含む予定である。それに加え、OQSはliboqsの統合されたOpenSSLも提供している[68]。
^Easttom, Chuck (2019-02-01). “An Analysis of Leading Lattice-Based Asymmetric Cryptographic Primitives”. 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). pp. 0811–0818. doi:10.1109/CCWC.2019.8666459. ISBN978-1-7281-0554-3
^Ding, Jintai; Schmidt (7 June 2005). “Rainbow, a New Multivariable Polynomial Signature Scheme”. In Ioannidis, John (英語). Applied Cryptography and Network Security. Lecture Notes in Computer Science. 3531. pp. 64–175. doi:10.1007/11496137_12. ISBN978-3-540-26223-7
^Buchmann, Johannes; Dahmen, Erik; Hülsing, Andreas (2011). Post-Quantum Cryptography. PQCrypto 2011. Lecture Notes in Computer Science. Vol. 7071. pp. 117–129. doi:10.1007/978-3-642-25405-5_8。
^ abBernstein, Daniel J.; Hopwood, Daira; Hülsing, Andreas; Lange, Tanja; Niederhagen, Ruben; Papachristodoulou, Louiza; Schneider, Michael; Schwabe, Peter et al. (2015). “SPHINCS: Practical Stateless Hash-Based Signatures”. In Oswald, Elisabeth; Fischlin (英語). Advances in Cryptology -- EUROCRYPT 2015. Lecture Notes in Computer Science. 9056. Springer Berlin Heidelberg. pp. 368–397. doi:10.1007/978-3-662-46800-5_15. ISBN9783662467992
^Bulygin, Stanislav; Petzoldt; Buchmann (2010). “Towards Provable Security of the Unbalanced Oil and Vinegar Signature Scheme under Direct Attacks”. Progress in Cryptology – INDOCRYPT 2010. Lecture Notes in Computer Science. 6498. pp. 17–32. doi:10.1007/978-3-642-17401-8_3. ISBN978-3-642-17400-1
^Pereira, Geovandro; Puodzius, Cassius; Barreto, Paulo (2016). “Shorter hash-based signatures”. Journal of Systems and Software116: 95–100. doi:10.1016/j.jss.2015.07.007.
^Blaum, Mario; Farrell; Tilborg (31 May 2002). Information, Coding and Mathematics. Springer. ISBN978-1-4757-3585-7
^Wang, Yongge (2016). “Quantum resistant random linear code based public key encryption scheme RLCE”. Proceedings of Information Theory (ISIT): 2519–2523. arXiv:1512.08454. Bibcode: 2015arXiv151208454W.
^Delfs, Christina; Galbraith. "Computing isogenies between supersingular elliptic curves over F_p". arXiv:1310.7789 [math.NT]。
^Misoczki, R.; Tillich, J. P.; Sendrier, N.; Barreto, P. S. L. M. (2013). “MDPC-McEliece: New McEliece variants from Moderate Density Parity-Check codes”. 2013 IEEE International Symposium on Information Theory. pp. 2069–2073. doi:10.1109/ISIT.2013.6620590. ISBN978-1-4799-0446-4
^ abZhang, Jiang; Zhang, Zhenfeng; Ding, Jintai; Snook, Michael; Dagdelen, Özgür (2015-04-26). “Authenticated Key Exchange from Ideal Lattices”. In Oswald, Elisabeth; Fischlin. Advances in Cryptology – EUROCRYPT 2015. Lecture Notes in Computer Science. 9057. Springer Berlin Heidelberg. pp. 719–751. doi:10.1007/978-3-662-46803-6_24. ISBN978-3-662-46802-9
^Krawczyk, Hugo (2005-08-14). “HMQV: A High-Performance Secure Diffie-Hellman Protocol”. In Shoup, Victor. Advances in Cryptology – CRYPTO 2005. Lecture Notes in Computer Science. 3621. Springer. pp. 546–566. doi:10.1007/11535218_33. ISBN978-3-540-28114-6
^Barreto, Paulo S. L. M.; Biasi, Felipe Piazza; Dahab, Ricardo; López-Hernández, Julio César; Morais, Eduardo M. de; Oliveira, Ana D. Salina de; Pereira, Geovandro C. C. F.; Ricardini, Jefferson E. (2014). Koç, Çetin Kaya. ed. A Panorama of Post-quantum Cryptography. Springer International Publishing. pp. 387–439. doi:10.1007/978-3-319-10683-0_16. ISBN978-3-319-10682-3
^ ab
Apple Security Engineering and Architecture (SEAR) (February 21, 2024). “iMessage with PQ3: The new state of the art in quantum-secure messaging at scale”. Apple Security Research. Apple Inc.. 2024年2月22日閲覧。 “With compromise-resilient encryption and extensive defenses against even highly sophisticated quantum attacks, PQ3 is the first messaging protocol to reach what we call Level 3 security — providing protocol protections that surpass those in all other widely deployed messaging apps.”