ベクトル値函数数学のとくに初等解析学におけるベクトル値函数(ベクトルちかんすう、英: vector-valued function)あるいはベクトル函数 (vector function) は、実数ベクトル空間 に値をとる実変数函数を言う。ベクトル値函数 に対し、像ベクトルの第 i-成分 (i = 1, …, n) のみを追跡する函数を fi とすれば、 は実函数 fi たちの n-組として表すことができる。定義域は一次元でもそれ以上の次元でもよい。 例えば、二次元ベクトルに値を取るベクトル値函数は、 を用いて あるいは単位ベクトルを用いれば と書ける。 の定義域は、成分函数 fi の定義域すべての交わりとするのが自然である。 ベクトル値函数の微分実変数ベクトル値函数 に対し、その微分は実函数の場合とまったく同じ形で、前進差分商の極限 で定義できる。ベクトルの演算が成分ごとに定義されているから、上記の極限が存在すれば、それは成分函数の微分からなるベクトル値函数と一致する: 実函数の微分に関する重要な性質はほとんどがベクトル値函数に対しても成立する。とくに微分の線型性と積の法則が成り立つ: これらの結果はベクトル値函数をベルソルを用いた形に書いて計算してみればわかる(ベルソルの微分は零ベクトルであることに注意)。 ベクトル変数のベクトル値函数 の場合は、これを m 本の n-変数函数 yi (i = 1, …, m) の組とみれば、mn 個の偏微分が考えられて、これら偏導函数を第 i 行がスカラー値函数 yi の勾配となるようにして得られる m 行 n 列の排列 は のヤコビ行列と呼ばれる。 例関連項目外部リンク
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia