エントロピーレート
確率の数理理論において確率過程のエントロピーレート(英: entropy rate)または情報源レート(source information rate)とは、平たく言えば、確率過程における情報量の時間平均である。可算個の時間添字を持つ確率過程のエントロピーレート は、 ステップまでの の結合エントロピーを で割った量の、 が無限大に向かうときの極限と定義される(極限が存在するときに限る): 一方、関連する量に がある。強定常過程に対しては となる。エントロピーレートは確率過程の一般的性質として捉えることができ、これは漸近等分割性と呼ばれる。エントロピーレートは確率過程の複雑性の推定にも使うことができる。また、言語の複雑性の特徴付け、ブラインド信号源分離、量化子器の最適化、データ圧縮アルゴリズムといった広範な対象に応用される。例えば、エントロピーレート最大化基準は機械学習における特徴選択に利用することができる[1]。 マルコフ連鎖のエントロピーレート既約、非周期的で正の再帰確率を持つマルコフ連鎖から定義される確率過程は極限分布を持ち、エントロピーレートは初期分布に依存しない。 例えば、マルコフ連鎖 が可算個の状態と確率行列 で定義されているとき、 は で与えられる。ここで はマルコフ連鎖の定常分布。 定義からの簡単な帰結として、独立同分布の確率変数列から成る確率過程のエントロピーレートは、各ステップの確率分布のエントロピーと一致する。 関連項目
脚注
参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve
Portal di Ensiklopedia Dunia