Valore singolareIn matematica, il termine valore singolare è utilizzato per indicare due concetti distinti, rispettivamente utilizzati nell'algebra lineare e analisi funzionale e nel contesto degli integrali ellittici. Algebra lineare e analisi funzionaleIn analisi funzionale, i valori singolari di un operatore compatto che mappa tra due spazi di Hilbert e sono le radici quadrate degli autovalori dell'operatore autoaggiunto non-negativo (dove è l'operatore aggiunto di ). Si tratta di numeri reali non negativi solitamente scritti in ordine decrescente come . Se è a sua volta autoaggiunto allora il maggiore tra valori singolari è uguale alla norma operatoriale di . In algebra lineare, nel caso di una matrice normale si può applicare il teorema spettrale per ottenere una diagonalizzazione (tramite matrici unitarie) di in modo che e quindi i valori singolari sono semplicemente i valori assoluti degli autovalori. Nel caso finito-dimensionale, tramite la decomposizione ai valori singolari una matrice può essere decomposta nella forma dove e sono matrici unitarie e una matrice diagonale (rettangolare) con autovalori sulla diagonale. Il concetto è stato introdotto da Erhard Schmidt nel 1907. Schmidt chiamava tuttavia "autovalori" i valori singolari; il termine è dovuto a Smithies, nel 1937. Nel 1957 Allahverdiev mostrò la seguente caratterizzazione per l'n-esimo valore singolare: Questa formulazione consente di estendere la nozione di valore singolare ad operatori in spazi di Banach. Integrali ellitticiNell'ambito degli integrali ellittici, un valore singolare è un modulo ellittico tale per cui: dove è un integrale ellittico completo di prima specie e: Bibliografia
Voci correlate
Collegamenti esterni
|