Il Reattore nucleare VVER (in russoВодо-водяной энергетический реактор?, Vodo-Vodjanoj Ėnergetičeskij Reaktor; Reattore Energetico Acqua-Acqua) è una serie di reattori nucleari ad acqua pressurizzata progettati e costruiti dall'Unione Sovietica. Le differenze macroscopiche ed esteriori rispetto ai reattori occidentali sono la presenza di un gran numero di generatori di vapore, in genere da 6 a 8, contro i 4 o meno dei modelli occidentali, e che questi sono posizionati in orizzontale e non verticale. Altre differenze poi sono date dalla struttura degli elementi di combustibile, che sono di forma esagonale al posto di quella quadrata utilizzata di solito in occidente, e le pastiglie di combustibile nucleare sono forate al centro per ridurre la probabilità di fusione in transitori incidentali.
Scopi del progetto
Gli scopi del progetto sono quelli di produrre una serie di reattori a basso costo ma al tempo stesso sicuri, utilizzando dei sistemi di sicurezza che rendano inutile la costruzione di un grande edificio di contenimento, che racchiuda al suo interno tutta la centrale. La costruzione infatti di tale scudo esterno, normalmente adottato in tutte le moderne filiere occidentali, è un costo rilevante per una centrale nucleare.
Le ultime versioni dei reattori hanno mantenuto bassi costi di installazione ma aumentando notevolmente i livelli di sicurezza equiparandoli a quelli occidentali.[senza fonte]
Caratteristiche ingegneristiche
L'abbreviazione VVER è la sigla in russo di Vodo-Vodjanoj Ėnergetičeskij Reaktor ovvero "Reattore Energetico Acqua-Acqua", un reattore nucleare di potenza refrigerato e moderato ad acqua. Questo descrive un tipo di progetto inquadrabile come reattore nucleare ad acqua pressurizzata. Le barre di combustibile del reattore sono completamente immerse in acqua alla pressione di 15 MPa, in modo che non bolla alle normali temperature operative (da 220 a più di 300 °C). L'acqua nel reattore serve sia come refrigerante che come moderatore, fatto che costituisce una caratteristica decisiva di sicurezza passiva. Se la circolazione del refrigerante dovesse mancare l'effetto di moderazione dei neutroni prodotto dall'acqua verrebbe a mancare, riducendo l'intensità della reazione e compensando per la perdita del refrigerante, una condizione nota come coefficiente di vuoto negativo. L'intero reattore è racchiuso in un massiccio contenitore in acciaio. Le pastiglie sono in uranio a basso arricchimento (circa 2,4–4,4% 235U) diossido di uranio (UO2) o equivalente compresso.
A differenza di quanto avviene nelle controparti occidentali, nei VVER gli elementi sono disposti in uno schema a triangolo equilatero, e non usano gruppi di barre di controllo in corrispondenza degli elementi di combustibile, ma elementi di controllo a loro adiacenti, ad inserimento dall'alto come nei reattori occidentali. Quando pienamente inseriti alcuni vani per gli elementi di combustibile sono quindi occupati da elementi di controllo.[1]
Circuito di refrigerazione primario
Nel circuito primario degli impianti di seconda generazione l'acqua è tenuta a una pressione di 12,4 MPa[2], sempre superiore a quella di ebollizione corrispondente alle normali temperature operative, ma inferiore a quella nelle controparti occidentali. L'acqua contenuta nel vessel, assolve la duplice funzione di moderare e refrigerare il nucleo. Il calore sottratto dal refrigerante viene a sua volta ceduto nel secondario, tramite i generatori di vapore.
Nel circuito primario distinguiamo 4 componenti essenziali:
Vessel: è il recipiente in pressione al cui interno è contenuto il core, cioè il luogo in cui hanno sede le reazioni nucleari di fissione, responsabili della produzione di potenza termica. Grazie al passaggio del refrigerante il calore viene asportato. Il controllo è effettuato tramite le barre di controllo, inseribili dall'alto.
Pressurizzatore: è un grosso recipiente, al cui interno si trova acqua e vapore. Ha la funzione di mantenere costante la pressione del primario. Al suo interno si trovano i riscaldatori e le docce con le quali si riesce ad operare la compensazione del volume del primario. In alto presenta delle valvole di sicurezza che permettono la fuoriuscita di vapore soltanto nel caso in cui, in scenari anomali, la pressione interna dovesse superare un dato valore di sicurezza.
Generatore di vapore (4): è un grande scambiatore di calore di forma cilindrica, il cui asse di simmetria è orizzontale. All'interno una grande piastra separa i fluidi, permettendone lo scambio termico. L'acqua del primario scorre nella parte bassa, mentre il vapore si produce nella parte alta. Dato che nel secondario regna una pressione inferiore al primario, le temperature sono sufficienti a permettere l'ebollizione dell'acqua con conseguente produzione di vapore.
Pompe di ricircolo (4): sono pompe progettate per smaltire notevoli portate con ridotta prevalenza e hanno il compito di permettere il ricircolo dell'acqua del primario.
Al fine di assicurare la sicurezza dell'impianto tali componenti assolvono la filosofia della ridondanza.
Circuito secondario e potenza elettrica
Nel circuito secondario troviamo i seguenti sottosistemi:
Generatori di vapore: come sopra, si tratta di grandi scambiatori di calore, che permettono la produzione di vapore sul lato secondario. Prima che il vapore prodotto finisca in turbina, è previsto il passaggio attraverso separatori ed essiccatori al fine di produrre un vapore secco.
Turbina: è l'organo rotante, comune a tutte le centrali termoelettriche convenzionali, mediante il quale si converte la potenza termica del vapore, in potenza meccanica. L'albero rotante è connesso tramite un'apposita frizione al generatore elettrico. La turbina è divisa in due blocchi: alta e bassa pressione. Al fine di limitare la produzione di condensa, le cui goccioline danneggerebbero gravemente le pale della turbina, è previsto l'uso di un riscaldatore tra i due blocchi.
Riscaldatore: si tratta di uno scambiatore di calore il cui fine è quello di essiccare il vapore in uscita dal blocco alta pressione della turbina. Il calore viene fornito tramite una modesta portata di vapore spillata prima dell'ingresso della turbina.
Condensatore: il vapore ormai a bassa pressione condensa in questo grande scambiatore di calore. La sottrazione del calore è permessa da un circuito di raffreddamento che usa acqua a temperatura ambiente.
Degasatore: è un dispositivo che permette la rimozione di eventuali incondensabili presenti nel fluido.
Pompe di alimento: Si tratta di pompe ad alta prevalenza e modesta portata indispensabili per portare l'acqua in uscita dal condensatore a bassa pressione, alla relativamente alta pressione presente sul secondario del generatore di vapore.
L'acqua in questo circuito normalmente non è radioattiva.
Circuito di refrigerazione
Si tratta del circuito che permette la sottrazione del calore dal condensatore. Ciò è reso possibile dall'uso di acqua prelevata dall'ambiente, ad esempio da laghi o fiumi. Nel caso in cui la disponibilità di acqua fosse modesta si ricorre all'uso delle torri evaporative, cioè di grandi camini in cui l'acqua viene spruzzata in alto e, durante la sua discesa, scambia calore con l'aria. In tale processo si registra una ridotta evaporazione dell'acqua, pertanto è prevista una portata di reintegro.
Oltre alla generazione di energia elettrica, molti impianti VVER assolvono anche alla capacità di fornire calore alle utenze residenziali e industriali.
Barriere di sicurezza
Le centrali nucleari devono scongiurare la fuga di materiali radioattivi nell'ambiente. Per assolvere tale mansione le centrali VVER, analogamente ad altre filiere, presentano 4 livelli di barriere:
Pellet di combustibile: Gli elementi radioattivi, costituiti dagli atomi frammentati, sono trattenuti in grande parte nello stesso materiale che costituisce il combustibile.
Barre di combustibile: Ogni barra è foderata con un rivestimento in lega di Zirconio, resistente al calore e all'alta pressione.
Vessel: Il massiccio recipiente in acciaio rappresenta un imponente scudo contro la fuga di radiazioni e materiali radioattivi.
Edificio del reattore: Si tratta di un vero e proprio edificio di contenimento che racchiude al suo interno tutto il circuito primario ed è capace di resistere alla stessa pressione presente nel primario.
Attualmente i reattori VVER operativi presentano un'attenzione alla sicurezza che non ha nulla a che vedere con i progetti dei reattori di tipo RBMK, ossia della stessa filiera del reattore che causò il disastro di Černobyl'.
Nei reattori RBMK, dell'Unione Sovietica, il moderatore era costituito da grafite (materiale infiammabile). Il reattore non presentava alcun edificio di contenimento, al fine di contenere i costi e permettere la sostituzione del combustibile durante la normale marcia del reattore. Questo fatto ha importanza in campo bellico: la facile sostituzione del combustibile permette l'irraggiamento del combustibile per breve tempo in modo da produrre Plutonio di qualità compatibile con la preparazione di armamenti nucleari.
I reattori VVER, come si è detto, presentano invece un robusto edificio di contenimento. La sostituzione del combustibile è possibile soltanto spegnendo l'impianto.
Le varie versioni del reattore
I reattori VVER hanno moltissime versioni, denominate ognuna come V-XXX, per semplicità organizzativa si procede quindi a una schematizzazione secondo le classi di potenza e non secondo le generazioni, visto che una stessa potenza ha visto numerose evoluzioni che hanno fatto avanzare di generazione la classe di potenza, come il VVER-1000 che dalla versione V-320 di II generazione si è arrivati (al momento) allo sviluppo del V-466B che era proposto per Belene ed ora per Kozloduj7 che è di III+ generazione.
VVER-400
Questa sezione sugli argomenti ingegneria e energia è ancora vuota. Aiutaci a scriverla!
VVER-440
Questa sezione sugli argomenti ingegneria e energia è ancora vuota. Aiutaci a scriverla!
VVER-1000
I reattori VVER hanno molte versioni che si differenziano per taglia elettrica e grado di sviluppo. Vi sono alcuni impianti che assolvono la duplice funzione di produrre energia termica ed elettrica per le utenze civili e industriali. Con la stessa sigla, spesso si confondono impianti di generazioni diverse. Vediamo in breve l'impianto tipico VVER-1000.
Il suffisso 1000 si riferisce alla taglia elettrica dell'impianto: si tratta di una centrale nucleare capace di erogare in rete fino a 1000 MW di potenza elettrica. Il nocciolo ha una taglia termica di poco più di 3 GW.
La produzione del calore avviene dentro un grande scafo in acciaio, sulla cui sommità sono disposti i canali che permettono l'introduzione delle barre di controllo.
Lo scafo, in posizione centrale, è connesso al circuito primario, costituito da 4 circuiti in parallelo. In ogni circuito di refrigerazione figura una pompa di ricircolo e il generatore di vapore. È presente un unico grande pressurizzatore, collegato alle tubazioni del circuito primario, con lo scopo di mantenere sotto controllo la pressione del circuito, dato che nel primario l'acqua refrigerante si mantiene allo stato liquido, nelle normali condizioni di funzionamento. La pressione interna del circuito è dell'ordine di 15,7 MPa[2], con temperature comprese tra i 300 e i 325 °C.
L'impianto appartiene alla famiglia dei reattori PWR, e si differenzia dai PWR occidentali sotto due aspetti:
Orientazione del generatore di vapore: ad asse orizzontale, mentre nella filiera occidentale ha asse verticale.
Sagoma dell'elemento di combustibile: l'elemento di combustibile ha sezione esagonale, mentre in entrambe le tecnologie occidentali PWR e BWR ha sezione quadrata.
I primi modelli
Questa sezione sugli argomenti ingegneria e energia è ancora vuota. Aiutaci a scriverla!
I modelli AES
Questa sezione sugli argomenti ingegneria e energia è ancora vuota. Aiutaci a scriverla!
Questa classe di potenza di reattori consta al momento di 2 differenti versioni, il V-392M derivante dai VVER-1000 modelli V-392 e V-412 e il V-491 derivante dal VVER-1000 modello V-428.[5]
VVER-TOI
Questa sezione sull'argomento ingegneria è ancora vuota. Aiutaci a scriverla!
VVER-1300
Questa sezione sugli argomenti ingegneria e energia è ancora vuota. Aiutaci a scriverla!
VVER-1500
Questa sezione sugli argomenti ingegneria e energia è ancora vuota. Aiutaci a scriverla!
I VVER nel mondo
Operativi
Reattori operativi
dati aggiornati alla pagina nazionale corrispondente
Soprattutto nei paesi dell'ex blocco sovietico, in Cina ed in India. In discussione in altre nazioni.
NOTE:
Molte agenzie per la sicurezza nucleare stanno ancora valutando al momento il design del reattore VVER per essere adottato nelle proprie nazioni. Molti stati o compagnie elettriche sono interessati a questa tipologia di reattori, quasi solamente in nazioni non occidentali.
Note
^Weisman Tong, Thermal Analysis of Pressurised Water Reactors, American Nuclear Society, La Grange Park, Illinois, 1996
^Rimarrà in ogni caso in funzione almeno fino all'accensione del successivo reattore armeno, vista la grande dipendenza della nazione da questo unico reattore
^abQuesti due reattori sono però radicalmente differenti rispetto agli omologhi costruiti altrove