Nelle trasformazioni di coordinate tra due sistemi di riferimento inerziali il quadrivettore rispetta le trasformazioni di Lorentz e le sue componenti si trasformano rispetto alla base standard dello spaziotempo di Minkowski come la differenza tra le rispettive coordinate spaziali e temporali. L'insieme delle rotazioni, traslazioni e cambi di coordinate tra due sistemi di riferimento inerziali alle quali sono soggetti i quadrivettori è il gruppo di Poincaré.
Definizione
Un quadrivettore è una quadrupla di valori:
che nella base standard dello spazio-tempo Minkowski rappresenta un evento. I quattro valori sono le coordinate nello spazio e nel tempo dell'evento, in particolare = 0, 1, 2, 3, sono le componenti spaziali, e c è la velocità della luce.
Il fatto che garantisce inoltre che le componenti abbiano la stessa unità di misura.[1][2][3]
Il quadrivettore spostamento:
è la distanza tra due punti dello spaziotempo.
Il raggio vettore che congiunge l'origine di un sistema di riferimento ad un evento qualsiasi dello spazio-tempo è l'esempio più elementare di quadrivettore; le sue componenti sono le coordinate nello spazio-tempo dell'evento in questione, cioè .
In genere i quadrivettori sono indicati in modo più economico e conveniente utilizzando la loro generica coordinata [4].
Gli indici in alto indicano che il quadrivettore è espresso nella sua forma controvariante: un quadrivettore controvariante è definito come una quaterna di valori che trasformano, nel passaggio da un sistema di riferimento inerziale ad un altro, come le coordinate di un evento, cioè secondo le trasformazioni di Lorentz. Contraendo l'indice con uno degli indici del tensore metrico si ottiene l'espressione covariante del quadrivettore:
Volendo esprimere l'uguaglianza in termini matriciali, possiamo considerare e le componenti di due vettori colonna e le componenti di una matrice 4 4 che rappresenta un'applicazione lineare:
La particolare forma (diagonale) del tensore metrico in relatività ristretta fornisce una facile regola per esprimere le componenti controvarianti di un quadrivettore in funzione di quelle covarianti, ovvero:
con
oppure, in forma matriciale:
Nel passare dalla forma controvariante di un vettore alla sua forma covariante basta quindi cambiare di segno le componenti spaziali. Un quadrivettore covariante non trasforma secondo le trasformazioni di Lorentz, bensì come la derivate di una funzione scalare: se è una funzione scalare, ha le stesse leggi di trasformazione di .
Il prodotto scalare fra quadrivettori può essere scritto tramite il tensore metrico in forma semplificata come prodotto scalare euclideo fra un vettore covariante e uno controvariante:
^Possono essere usati indici latini o greci; esistono due convenzioni opposte secondo cui l'indice greco assume i valori 0,1,2,3 e quello latino solo i valori "spaziali" 1,2,3, oppure viceversa.
^Qui si usa per la metrica la convenzione dei segni (-,+,+,+).