Funzione meromorfaIn matematica, in particolare in analisi complessa, si definisce funzione meromorfa su un sottoinsieme aperto del piano complesso una funzione che è olomorfa su tutto ad esclusione di un insieme di punti isolati che sono poli della funzione stessa. Ogni funzione meromorfa su può essere espressa come rapporto di due funzioni olomorfe (con la funzione denominatore diversa dalla costante 0) definite sull'intero : i poli della funzione meromorfa si ritrovano allora come zeri del denominatore. Da un punto di vista algebrico, l'insieme delle funzioni meromorfe sopra un dominio connesso munito delle operazioni di somma e prodotto è il campo delle frazioni del dominio di integrità costituito dall'insieme delle funzioni olomorfe nell'intero . In parole povere, le funzioni meromorfe stanno alle olomorfe come le funzioni razionali fratte stanno alla funzioni razionali intere, come sta a . Esempi
ProprietàDato che i poli di una funzione meromorfa sono isolati, essi costituiscono un insieme finito, come accade alle funzioni razionali, o un insieme numerabile, come accade alla funzione trascendente Servendosi della continuazione analitica per eliminare le singolarità eliminabili, le funzioni meromorfe possono essere composte con operazioni di somma, sottrazione, prodotto e divisione con un denominatore diverso dalla funzione costante nulla. Dunque le funzioni meromorfe costituiscono un campo; in effetti si tratta di un'estensione del campo dei numeri complessi. Nel linguaggio delle superfici di Riemann, una funzione meromorfa si comporta come una funzione olomorfa che ha come codominio la sfera di Riemann e tale che non si riduca alla funzione costante . I poli corrispondono ai numeri complessi che sono mandati dalla funzione nel punto . Bibliografia
Voci correlateCollegamenti esterni
|