In fisica, un materialeferrimagnetico è quello in cui i momenti magnetici degli atomi in differenti sottoreticoli sono antiparalleli, come nei materiali antiferromagnetici, ma nei materiali ferrimagnetici, non essendo i momenti antiparalleli uguali in modulo, risulta un momento magnetico risultante non nullo e quindi il materiale presenta una magnetizzazione spontanea.[1]
Il ferrimagnetismo è detto anche antiferromagnetismo scompensato, proprio per il fatto che i momenti magnetici nei sottoreticoli non sono uguali in modulo.
Questo fenomeno si verifica quando i sottoreticoli consistono di materiali differenti o ioni (come Fe2+ e Fe3+).
I materiali ferrimagnetici, come quelli ferromagnetici, possiedono una magnetizzazione spontanea sotto la temperatura di Curie, e non mostrano ordine magnetico sopra questa temperatura. Comunque esiste qualche volta una temperatura sotto la temperatura di Curie a cui i due sottoreticoli hanno momenti uguali, facendo risultare un momento magnetico netto nullo; questo è chiamato punto di compensazione di magnetizzazione.
Questo punto è osservato facilmente nei granati e nelle terre rare - leghe di metalli di transizione (RE-TM).
Inoltre, i ferrimagneti possono anche esibire un punto di compensazione del momento angolare a cui il momento angolare dei sottoreticoli magnetici è compensato. Questo punto di compensazione è un punto cruciale per raggiungere alte velocità di inversione di magnetizzazione nelle memorie magnetiche[2].
Il ferrimagnetismo è mostrato dai ferriti e dai granati magnetici. La più vecchia sostanza magnetica conosciuta, la magnetite (ossido misto di ferro(II,III),
Fe3O4), è un ferrimagnete; essa era originariamente classificata come un ferromagnete prima della scoperta di Néel del ferrimagnetismo e dell'antiferromagnetismo.[3].
Alcuni materiali ferrimagnetici sono YIG (granato di ittrio e ferro) e ferriti composti di ossidi di ferro e di altri elementi come alluminio, cobalto, nichel, manganese e zinco.
Proprietà
I materiali ferrimagnetici hanno un'alta resistività e hanno proprietà anisotropiche. L'anisotropia è indotta dall'applicazione di un campo magnetico esterno. Quando questo campo magnetico applicato si allinea con i momenti di dipolo, causa un momento magnetico netto e fa sì che i momenti magnetici inizino un moto di precessione ad una frequenza controllata dal campo magnetico applicato. Quest'ultimo fenomeno è chiamato precessione di Larmor.
^C. D. Stanciu, A. V. Kimel, F. Hansteen, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, Ultrafast spin dynamics across compensation points in ferrimagnetic GdFeCo: The role of angular momentum compensation, Phys. Rev. B 73, 220402(R) (2006).
^L. Néel, Propriétées magnétiques des ferrites; Férrimagnétisme et antiferromagnétisme, Annales de Physique (Paris) 3, 137-198 (1948).
Rolf E. Hummel, Electronic properties of materials, 3. ed., New York [u.a.], Springer, 2001, ISBN0-387-95144-X.
K.J. Pascoe, Properties of materials for electrical engineers., New York, N.Y., J. Wiley and Sons, 1973, ISBN0-471-66911-3.
Paulsen, Jason A. Lo, Chester C H; Snyder, John E.; Ring, A. P.; Jones, L. L.; Jiles, David C. Jones, Study of the Curie temperature of cobalt ferrite based composites for stress sensor applications, 39 , Issue: 5, settembre 2003, pp. 3316-3318.
Pierre Curie - Biography, su Nobelprize.org, From Nobel Lectures, Physics 1901-1921, Elsevier Publishing Company, Amsterdam, 1967, The Nobel Foundation 1903. URL consultato il 14 marzo 2013.