Mikroszkópia![]() FénymikroszkópiaFénymikroszkópA fénymikroszkópokban látható fénnyel világítják meg a vizsgált objektumot, amely ezután egy vagy több optikai lencsén halad át.[1] A képet felfoghatja közvetlen az emberi szem, egy fotólemez vagy valamilyen digitális képalkotó eszköz. Az egyszerű lencsék vagy lencserendszerek és tartozékaik valamint a megfelelő megvilágító rendszer és a mintatartó lemez alkotják a fénymikroszkópokat. A fénymikroszkópia korlátaiA standard fénymikroszkópia korlátai többek között:
Különösen az élő sejtekben nincs elegendő kontraszt a jó láthatósághoz, mivel a sejt belső szerkezetei színtelenek és átlátszóak. A kontrasztot leggyakrabban festéssel növelik, a különböző szerkezetekre szelektív festékekkel. de ehhez általában a minta fixálása (megölése) szükséges. A festés növeli az artifaktok számát is, vagyis a képen olyan strukturális részletek jelenhetnek meg, amelyek valójában nincsenek is ott. Ezeket a korlátokat többnyire áthidalták már különböző speciális technikákkal, melyekkel non-invazív módon tudják növelni a kontrasztot. Ezek a technikák általában a sejtszerkezet részeinek eltérő törésmutatóját használják ki. A fénymikroszkópia technikáiBizonyos vegyületeket (festékeket) nagyenergiájú (kis hullámhosszú) fénnyel megvilágítva más, alacsonyabb frekvenciájú fényt bocsátanak ki. Ezt a jelenséget fluoreszcenciának nevezik. Néhány mintának önmagában is van fluoreszcens tulajdonsága, az alkotó vegyületektől függően, ezt autofluoreszcenciának nevezik. A módszer nagyon elterjedt a modern biológiai tudományokban, mivel nagyon érzékeny és segítségével kis molekulák is kimutathatóak. Sok különféle fluoreszcens festék létezik, melyekkel más-más sejtszervecske vagy molekulatípus festhető. Egy különösen sok helyen használható módszer az immunfestés, melynek során egy fluoreszcens molekularészt (fluorokróm) kapcsolnak antitestekhez. Ilyen fluorokrómok például a fluoreszcein vagy a rhodamin. Az antitestek specifikussá tehetőek egy bizonyos molekulára. Például a DNS alapján mesterséges fehérjéket lehet előállítani. Ezekkel a fehérjékkel nyulakat immunizálnak, akikben a fehérjéhez kötődő antitestek képződnek. Ezekhez az antitestekhez fluorokrómot csatolnak és így követni tudják útjukat a vizsgált sejtekben. Újabban a zöld fluoreszcens fehérje (green fluorescent protein) és hasonló fehérjék használata terjed. Ezen fehérjék génjét a vizsgálandó fehérjéket kódoló DNS-szakaszhoz kötik. A létrejövő fluoreszcens fehérjerész nem mérgező és általában nem gátolja a fehérje eredeti funkcióját. A genetikailag módosított sejtek maguk készítik el ezeket a fluoreszcens fehérjéket és így funkciójuk in vivo (az élő sejtben) vizsgálható. Mivel a fluoreszcencia során kibocsátott fény hullámhossza (színe) eltér a megvilágító fényétől, a fluoreszcenciamikroszkóppal alkotott kép általában csak a vizsgálni kívánt (megfestett) rész látható. Ez a nagy specifikusság a fluoreszcenciamikroszkópia széles körű elterjedéséhez vezetett a kutatásban. Különböző struktúrák különböző színű festékekkel festhetőek és ezeket párhuzamosan lehet vizsgálni, vagy külön-külön megfelelő hullámhosszú fényt, vagy fényszűrőt alkalmazva. HivatkozásokJegyzetek: Általános könyvek a témáról:
Külső hivatkozások
|
Portal di Ensiklopedia Dunia