Konvex burok![]() A matematikában az euklideszi sík vagy euklideszi tér (vagy általánosabban, egy valós számok fölötti affin tér) X ponthalmazának konvex burka vagy konvex burkolója az a legkisebb konvex halmaz, ami X-et tartalmazza. Ha X a sík korlátos halmaza, a konvex burok elképzelhető úgy is, mintha X köré gumiszalagot feszítenénk.[1] Formálisan a konvex burok definiálható úgy is, mint az X-et tartalmazó összes konvex halmaz metszete, vagy az X pontjai összes konvex kombinációjának halmaza. Ez utóbbi definíció segítségével a konvex burok definíciója kiterjeszthető az euklideszi terekről tetszőleges valós vektorterekre; ez pedig tovább általánosítható irányított matroidokra.[2] A síkban vagy más, alacsony dimenziójú euklideszi terekben elhelyezkedő véges ponthalmaz konvex burka előállításának algoritmikus problémája a számítási geometria alapvető problémáinak egyike. Definíciók![]() ![]() Egy ponthalmaz definíció szerint akkor konvex, ha bármely két pontját összekötő egyenes szakasz pontjait is tartalmazza. Ekkor adott X halmaz konvex burka a következő módokon definiálható:
Az első definícióról nem nyilvánvaló, hogy működhet: miért lenne biztos, hogy minden X-re létezik az X-et tartalmazó egyedi, minimális konvex halmaz? A második meghatározás, miszerint az X-et tartalmazó összes konvex halmaz metszete, már jól definiált, és minden más, X-et tartalmazó Y halmaz részhalmaza, hiszen X a metszésbe hozott halmazok között szerepel. Tehát éppen egyedi minimális konvex halmaz, ami X-et tartalmazza. Minden, X-et tartalmazó konvex halmaznak (a konvexitás miatt) tartalmaznia kell X pontjainak összes konvex kombinációját, tehát az összes konvex kombináció halmaza részhalmaza az összes X-et tartalmazó konvex halmaz metszetének. Megfordítva, az összes konvex kombináció halmaza önmaga is az X-et tartalmazó konvex halmaz, tehát szintén tartalmazza az összes X-et tartalmazó konvex halmaz metszetét, tehát a két definíció által meghatározott halmazok azonosak. Valójában, Caratheodory tétele szerint, ha X egy N dimenziós vektortér részhalmaza, a fenti definícióban mindössze N + 1 pont konvex kombinációjára van szükség. Tehát a síkban a három vagy több pont alkotta X halmaz konvex burka megegyezik az X ponthármasai által meghatározott összes háromszög uniójával, általánosabban pedig az N dimenziós térben a konvex burok megegyezik a legalább N + 1 pontból álló X pont-N-esei által meghatározott szimplexek uniójával. Ha X konvex burka zárt halmaz (ami például akkor következik be, ha X véges halmaz, vagy általánosabban, egy kompakt halmaz), akkor az megegyezik az összes, X-et tartalmazó zárt féltér metszetével. A hipersík-szeparációs tétel szerint ebben az esetben a konvex burkon kívül eső bármely pont a konvex buroktól alkalmasan megválasztott féltérrel elválasztható. Léteznek azonban olyan konvex halmazok, illetve ezek burkai, melyek nem reprezentálhatók ilyen módon – például a nyílt félterek is ilyenek. Elvontabban, a Conv() konvexburok-művelet a lezárási operátor jellemző tulajdonságaival rendelkezik:
Véges ponthalmaz konvex burka![]() Egy véges ponthalmaz konvex burka megegyezik pontjai lehetséges konvex kombinációinak halmazával. Egy konvex kombinációban minden -beli ponthoz egy súlyt vagy együtthatót rendelnek olyan módon, hogy a súlyok nem negatívak, összegük pedig éppen egy. A súlyok segítségével kiszámítható a pontok súlyozott átlaga. Bárhogyan választják meg az együtthatókat, a létrejött konvex kombináció a konvex burok egy pontját adja, a teljes konvex burok pedig létrejön, ha az összes lehetséges konvex kombináció megalkotásával. Egyetlen képletben kifejezve, a konvex burok a következő halmazzal egyezik meg: Az véges ponthalmaz konvex burka az n = 2 esetben konvex sokszög, általánosabban az -t tekintve konvex politóp. Az minden pontja, ami nincs benne a többi pont konvex burkában (tehát: ) a egy csúcsa. Valóban, minden -beli konvex politóp megegyezik a csúcsok konvex burkával. Ha pontjai mind egy egyenesre esnek, a konvex burok a legszélső két pontot összekötő egyenes szakasszal egyezik meg. Ha az a sík nem üres, véges részhalmaza, képzeletben kifeszíthetünk egy gumiszalagot úgy, hogy körbevegye a teljes -t, majd elengedjük, hogy összehúzódhasson; mikor feszes lesz, éppen az konvex burkát foglalja magába.[1] Két dimenzióban a konvex burkot néha két töröttvonalra bontják, a felső és az alsó burokra, melyek a burok legbaloldalibb, illetve legjobboldalibb pontjai között feszülnek. Általánosabban, tetszőleges dimenzióban elhelyezkedő általános helyzetű pontok esetében a konvex burok minden eggyel alacsonyabb dimenziós „lapja” vagy fölfelé (elválasztva a burkot a fölötte lévő pontoktól), vagy lefelé mutat; a fölfelé mutató lapok uniója egy topologikus korongot alkot, ami a felső burok; hasonlóan, a lefelé mutató lapok uniója alkotja az alsó burkot.[3] Konvex burok kiszámítása![]() A számítási geometria területén több algoritmus ismert véges ponthalmazok és más mértani objektumok konvex burkának kiszámítására. A konvex burok meghatározása a kívánt konvex alakot leíró egyértelmű, hatékony adatstruktúra előállítását jelenti. A megfelelő algoritmusok bonyolultságát általában a bemeneti pontok, n, illetve a konvex burok pontjai, h függvényében adják meg. Két, illetve három dimenzióban több olyan kimenetérzékeny algoritmus ismert, ami a konvex burkot O(n log h) időben meghatározza. Háromnál magasabb d dimenziókban a konvex burok kiszámításához az eddig ismert algoritmusoknak időre van szükség, ami éppen a kimenetérzékeny algoritmus bonyolultsága a legrosszabb esetben.[4]
Minkowski-összeg és konvex burkok![]() A konvex burok képzésének művelete „jól viselkedik” a halmazok Minkowski-összeadását tekintve.
Általánosabban, az Sn véges (nem üres) halmazcsalád Minkowski-összege definíció szerint az összegzendők vektorainak elemenkénti összegzésével képezett összeg:
Ez általánosabban bármennyi véges, nem üres halmazra is kimondható:
Más szavakkal, a Minkowski-összegzés és a konvex burok képzése kommutatív műveletek.[5][6] A fentiekből látszik, hogy a Minkowski-összeadás jelentősen különbözik a halmazelmélet unió műveletétől; és valóban, két konvex halmaz uniója nem feltétlenül konvex: általános esetben a Conv(S) ∪ Conv(T) ⊆ Conv(S ∪ T) valódi részhalmazt és nem egyenlőséget jelent. A konvex burok művelet kell ahhoz, hogy a konvex halmazok halmaza teljes hálót alkosson, melynek az unió (egyesítés) művelete a konvex halmazok uniójának konvex burkával egyezik meg:
Más struktúrákkal való kapcsolata![]() Egy ponthalmaz Delaunay-háromszögelése és annak duálisa, a Voronoj-cella matematikailag a konvex burkok rokonainak tekinthetők: egy Rn-beli ponthalmaz Delaunay-háromszögelése tekinthető úgy is, mint egy Rn+1-beli konvex burok projekciója.[7] Topologikusan tekintve, egy nyílt halmaz konvex burka mindig nyílt, egy kompakt halmazé pedig mindig kompakt; léteznek azonban olyan tárt halmazok, melyek konvex burka nem zárt.[8] Például a zárt halmaz konvex burka a nyitott felső félsík. AlkalmazásaiA konvex burok előállításának számos gyakorlati alkalmazása van az alakfelismerés, képfeldolgozás, a statisztika, földrajzi információs rendszerek, a játékelmélet, fázisdiagramok előállítása, az absztrakt interpretáció-alapú statikus kódanalízis területén. Eszközként, építőelemként is szolgál más számítási geometriai algoritmusok részeként, ilyen például a ponthalmaz szélességét és átmérőjét megállapító forgó tolómérce módszer. A konvex burok fogalma az etológiában minimális konvex sokszög (MCP) néven ismert, ami egy állat mozgáskörzetének klasszikus, bár leegyszerűsítő megközelítése azon pontok alapján, ahol az állatot megfigyelték.[9] A kiugró értékek az MCP-t rendkívül megnövelhetik, ezért szokás olyan megközelítést alkalmazni, hogy csak a megfigyelések egy részét veszik bele az MCP-be (például úgy, hogy az a pontok 95%-át tartalmazza).[10] Kapcsolódó szócikkek
Fordítás
Jegyzetek
Források
További információk
|
Portal di Ensiklopedia Dunia