Improprius integrálAz improprius integrál a matematikai analízis fogalma. Segítségével nyílt intervallumokra is kiterjeszthető az integrálfogalom. Akkor van erre szükség, ha az integrálás alsó (felső) határánál a függvény jobb oldali (bal oldali) határértéke végtelen. Szintén értelmezhető vele, hogy mit jelentsen az, ha az integrálás alsó határa a negatív végtelen, illetve az, ha a felső határa pozitív végtelen. A latin improprius szó jelentése nem illő, nem illeszkedő. DefinícióLegyen értelmezve az f függvény az [a, b[ jobbról nyílt intervallumon, ahol a valós szám, b pedig lehet valós szám, de pozitív végtelen is. Ha f szakaszonként folytonos minden [a, ω] ω < b zárt intervallumon, akkor az [a, b[ jobbról nyílt intervallumon vett improprius integrálja a következőt jelenti: Ha az f függvény értelmezve van az ]a, b] balról nyílt intervallumon, ahol a valós szám vagy negatív végtelen, b pedig valós szám. Legyen továbbá f szakaszonként folytonos minden [ω, b] a < ω zárt intervallumon. Ekkor f függvény ]a, b] balról nyílt intervallumon vett improprius integrálja a következőt jelenti: Ha a definíciókban szereplő határérték létezik és véges, akkor az az improprius integrált konvergensnek, ellenkező esetben divergensnek nevezzük. A fentiek segítségével mindkét oldalon nyílt ]a, b[ intervallumra is definiálható az integrál (ahol a valós vagy negatív végtelen, b valós vagy pozitív végtelen). Ehhez választanunk kell egy c ∈ ]a, b[ számot. Az ilyen integrál definíciója: Az ilyen improprius integrált csak akkor nevezzük konvergensnek, ha a fenti összeg mindkét tagja konvergens. Ilyenkor c megválasztásától független az eredmény. JelentőségeA fenti definíciókból és az integrálfüggvény folytonosságából következik, hogy ha egy függvény zárt intervallumon integrálható, akkor a nyílt intervallumokon vett improprius integrálok megegyeznek a szokványos (nem improprius) integrállal. Ez a definíció azonban új fajta integrálásokat is lehetővé tesz:
Példa![]() Az e-x függvény integrálja nullától végtelenig az improprius integrál definíciójának használatával:
Kapcsolódó szócikkek |
Portal di Ensiklopedia Dunia