A diffúziós együttható (D) a molekuláris diffúzió – a részecskék szétterjedése, anyagvándorlása a véletlenszerű hőmozgás, Brown-mozgás következtében - okozta molekulafluxus és az anyag koncentrációgradiense közötti arányossági tényező Fick I. törvénye alapján. Megadja az egységnyi idő alatt egységnyi felületen átdiffundált anyag mennyiségét, ha a koncentrációesés is egységnyi volt. A diffúziós együttható a részecskék mozgékonyságát, a diffúzió sebességét jellemzi, az Einstein-Smoluchowski-egyenlet szerint a T idő alatt megtett távolság négyzetátlagából meghatározható:
Ez az egyenlet kapcsolatot teremt a részecskediffúzió mikroszkopikus jellemzői és a diffúzióval kapcsolatos makroszkopikus mennyiségek, pl. a viszkozitás között.
A diffúziós együttható SI-mértékegysége a m²/s (távolság²/idő).
Diffúziós együtthatók gázfázisban
A diffúziós együtthatók gáz fázisban[1][2] erősen függnek a nyomástól és a hőmérséklettől, két gáz esetén a Chapman-Enskog-elmélet szerint az alábbi egyenlettel írhatók le:[3]
ahol
1 és 2 a gázkeverékben található kétféle molekula indexei
A diffúziós együttható mérésére minden olyan fizikai méréstechnika alkalmas, amellyel egy adott tér jól definiált helyén a kérdéses anyag koncentrációjának időfüggése nyomon követhető. A gyakorlatban leginkább alkalmazott technikák a dinamikus fényszórás (DLS – Dynamic Light Scattering) és a diffúziós NMR (PFG – Pulsed Field Gradient, DOSY – Diffusion Spectroscopy). Ezek mellett színes anyagok esetén a fényelnyelés, illetve emisszió mérését alkalmazhatjuk a pillanatnyi koncentráció detektálására, míg töltéssel rendelkező ionok vagy molekulák esetén az elektromosvezetőképesség-mérés módszerét is használhatjuk e célra.[7] NMR spektroszkópia alkalmazásával kétféle diffúziós jelenség is vizsgálható: A relaxációs mérések kiértékelésével a rotációs diffúzió jellemezhető, ami a ps-ns tartományba eső mozgás, a PFG-technikákkal[8] pedig a ms-s-os nagyságrendű transzlációs diffúzió, ez utóbbit jellemezzük a D együtthatóval, és alkalmazzuk molekulaméret meghatározásra. A PFG egy rövid, időzített pulzus, melynek intenzitása egy adott tengely (tipikusan z) mentén változik, és amelyet négy tulajdonság határoz meg: a tengely orientációja, a pulzus erőssége, alakja és időtartama. A diffúziós mérések legegyszerűbb fajtája a PGSE (Pulsed Gradient Spin Echo, gradiens spin-echo), mely a Hahn-féle spin-echo pulzusszekvencia egy módosított változata. Ebben a mérésben a jelintenzitás (I) csökkenését követjük adott diffúziós paraméterek mellett (, , G). A transzlációs diffúziós együttható meghatározásánál a diffúziós paraméterek közül leginkább a G gradiens erősségét változtatjuk. A jelintenzitás-G lecsengés a Stejskal-Tanner-összefüggés szerint illeszthető, és D értéke meghatározható:
A jelintenzitás lecsengése a gradienserősség függvényében diffúziós NMR mérés esetén
ahol I a jelintenzitás, I0 a kezdeti jelintenzitás, D a diffúziós együttható.
Amennyiben különböző molekulaméretű részecskék vannak az oldatban, a 2D DOSY kiértékelés a célravezetőbb. Az indirekt dimenzió logD értékéből számolható ki a diffúziós együttható, a mérés ilyen fajta értelmezése egy NMR kromatogramra hasonlít.[9]
↑A. Einstein: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen (PDF; 733 kB), Annalen der Physik. 17, 1905, S. 549ff.