Théorème du point fixe de Kleene

En mathématiques, dans le domaine de la théorie des ordres, le théorème du point fixe de Kleene s'énonce comme suit :

Théorème du point fixe de Kleene — Soient L un ordre partiel complet, 0 son élément minimum, et une application continue au sens de Scott. Alors le plus petit point fixe de f est le sup de la suite croissante suivante :

C'est donc un analogue, pour les ordres partiels complets, du théorème de Knaster-Tarski qui, lui, concerne les treillis complets.

Précisons les deux hypothèses de cet énoncé :

  • Un ordre partiel complet est un ensemble partiellement ordonné qui possède un élément minimum, et dont toutes les chaînes ont une borne supérieure ;
  • f est continue au sens de Scott si c'est une fonction croissante qui de plus préserve les sup de chaînes. (Le fait qu'elle soit croissante assure a priori qu'elle a un plus petit point fixe, et que la suite ci-dessus est croissante.)

 

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia