Théorème de SchurEn mathématiques, il existe plusieurs théorèmes de Schur. Un théorème de Schur garantit qu'il n'existe pas de partition finie de l'ensemble des entiers strictement positifs par des sous-ensembles sans somme. Il est généralisé par le théorème de Folkman. Concrètement[2],[3], si l'on attribue une couleur à chaque entier d'un même sous-ensemble de la partition, il existe trois entiers x, y, z de même couleur (avec x et y non nécessairement distincts) tels que x + y = z. Plus précisément[4], si c est le nombre de couleurs utilisées, il existe[5] un plus petit entier S(c), appelé nombre de Schur, tel que l'ensemble fini {1, ..., S(c)} ne puisse pas être partitionné en c ensembles sans sommes (on appelle parfois plutôt[6] « nombre de Schur » l'entier s(c) = S(c) – 1, c'est-à-dire le plus grand entier tel que {1, ..., s(c)} puisse être partitionné en c ensembles sans sommes). En 2025 on ne connaît la valeur de S(c) que pour c = 1, 2, 3, 4 et 5 : 0, 5, 14, 45 et 161. Cas c = 2Montrons que S(2) = 5.
Cas c = 3Montrons que S(3) est au moins égal à 14. Il existe une partition de {1, … ,13} en trois parties dont aucune ne contient trois entiers x, y, z tels que x + y = z, à savoir la partition suivante : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13. On remarque qu'il est impossible d'ajouter 14, car selon la couleur du nombre 14, on prendra : 14 = 1 + 13 ou 14 = 2 + 12 ou 14 = 9 + 5. En recensant toutes les partitions analogues de {1, … ,13} (car ce n'est pas la seule de ce type) on s'apercevrait qu'on ne peut jamais ajouter 14. Par suite, S(3) = 14. Cas c = 4 et c = 5La détermination des nombres de Schur suivants est difficile. On a S(4) = 45, mais ce n’est qu’en 2017 qu’on a pu démontrer que S(5) = 161, par une démonstration occupant 2 Po (deux millions de milliards de caractères)[7]. En combinatoireUn autre théorème de Schur concerne le nombre de manières d'exprimer un entier naturel comme combinaison linéaire à coefficients entiers (positifs) d'un ensemble donné d'entiers premiers entre eux. Plus précisément, si est un ensemble de n entiers (strictement positifs et distincts) tels que PGCD, alors le nombre de n-uplets d'entiers naturels tels que admet comme comportement asymptotique, quand tend vers l'infini : En particulier, pour tout ensemble d'entiers premiers entre eux, il existe une valeur de m telle que tout entier plus grand admet au moins une représentation comme combinaison linéaire de . Cette conséquence du théorème est en rapport avec le contexte plus familier du problème des pièces de monnaie de représenter un certain montant d'argent à l'aide de pièces de monnaie de valeur faciale donnée. Si ces valeurs faciales sont premières entre elles, comme 2 et 5, tout montant assez grand peut être représenté en utilisant uniquement ces pièces. Schur a démontré en 1912 que :
Notes et références
|
Portal di Ensiklopedia Dunia