Théorème de Fary-MilnorEn théorie des nœuds, le théorème de Fary-Milnor dit qu'en dimension 3, une courbe fermée simple lisse dont la courbure totale est assez petite ne peut être qu'un nœud trivial. Il a été démontré indépendamment par István Fáry (en) en 1949 et John Milnor en 1950. ÉnoncéSoit K un lacet simple de l'espace euclidien R3, suffisamment régulier pour qu'on puisse définir la courbure en chacun de ses points. Si sa courbure totale est inférieure ou égale à 4π, alors K est un nœud trivial. De façon équivalente, si K est un nœud non trivial dans R3, alors sa courbure totale vérifie (L'implication réciproque est fausse.) Généralisations à des courbes non lissesOn a le même résultat pour une ligne polygonale, en remplaçant l'intégrale de la courbure par la somme des angles entre deux arêtes consécutives. En approximant les courbes par des lignes polygonales, on peut étendre la définition de la courbure totale à une classe de courbes plus générale, pour laquelle le théorème de Fary-Milnor est encore vrai (Milnor 1950, Sullivan 2007). Références
Lien externe
|
Portal di Ensiklopedia Dunia