Puissance des armes nucléaires![]() La puissance explosive de l'arme nucléaire est la quantité d'énergie libérée lorsqu'une arme nucléaire explose, exprimée habituellement en masse équivalente de trinitrotoluène (TNT), soit en kilotonnes (milliers de tonnes de TNT) ou mégatonnes (millions de tonnes de TNT), ou parfois en térajoules (un kilotonne de TNT vaut 4,184 TJ). Comme la quantité précise de l'énergie libérée par la TNT est et a été sujet à des incertitudes de mesure, surtout à l'aube de l'ère nucléaire, la convention couramment admise est qu'un kilotonne de TNT équivaut à 1012 calories. L'énergie libérée par une bombe ne suffit pas à elle seule à préciser les dégâts potentiels que cette bombe peut occasionner à court et long terme. Ces dégâts sont de nature mécanique par effet de souffle lié à l'onde de choc, par propulsion et retombée de matériaux, poussières et blocs de toutes dimensions, effet thermique de la boule de feu dont la température initiale est de plusieurs milliers de degrés, effets radioactifs par diverses radiations immédiates et jusqu'à très long terme en particulier par ingestion de poussières, effet électromagnétique par impulsion de type foudre pouvant détruire les circuits électroniques. Pour chaque bombe d'une énergie donnée, ces effets sont d'intensité variable selon le choix de l'altitude à laquelle la bombe explose. Le ratio puissance/poids est la quantité d'énergie divisée par la masse de l'arme. Le ratio puissance/poids théorique maximum des armes de fusion (armes thermonucléaires) est de 6 mégatonnes de TNT par tonne de bombe (25 TJ/kg). Des ratios de 5,2 mégatonnes par tonne et plus ont été atteints pour de grosses armes construites pour être utilisés comme une tête nucléaire unique au début des années 1960[1]. Depuis, les ogives plus petites, nécessaire pour augmenter les dégâts produits (dommages produits/masse totale des bombes) via des systèmes de lancement multitêtes, a entraîné une baisse du rendement puissance/poids des ogives modernes. ExemplesDans l'ordre croissant des puissances (la plupart des puissances sont approximatives) :
![]() À titre de comparaison, la puissance de l'explosion de la Massive Ordnance Air Blast Bomb est de 0,011 kt, et celle de l'attentat d'Oklahoma City, en utilisant une bombe à base d'engrais dans un camion, a été de 0,002 kt. La dislocation du météore de Tcheliabinsk, en 2013, a dégagé une puissance de 440 kt, et la plus puissante explosion non-nucléaire accidentelle a été celle de la deuxième fusée lunaire soviétique N-1, qui a atteint une puissance de 10 kt. La plupart des explosions artificielles non nucléaires sont considérablement plus faibles que celle de ce qui est considéré comme de très petites armes nucléaires. Limites de puissanceLe ratio puissance/masse est la puissance développée par l'arme par rapport à la masse de l'arme. Le ratio maximum théorique des bombes H (de fusion) est de 6 mégatonnes de TNT par tonne (25 TJ/kg)[1]. La limite pratique réalisable est un peu plus faible, et tend à être plus faible pour les plus petites armes, comme celle qui se trouvent majoritairement dans les arsenaux à l'heure actuelle, car conçues pour le mirvage, ou l'emport des missiles de croisière.
Les grosses ogives font rarement partie des arsenaux d'aujourd'hui. Les plus petites ogives MIRV sont beaucoup plus destructrices pour une puissance totale donnée ou à capacité d'emport donnée. Puissance de quelques explosionsLa liste suivante recense les explosions nucléaires qui ont marqué l'ère nucléaire. En plus, des bombardements atomiques d'Hiroshima et de Nagasaki, le premier essai nucléaire d'un type d'arme donné pour un pays est inclus, ainsi que les essais qui ont été notables (comme le plus grand essai jamais effectué). Tous les puissances sont données en kilotonnes de TNT. Les tests putatifs (comme l'incident Vela) n'ont pas été inclus.
Nota 1 : Il y a deux types de bombes à fusion, la véritable bombe à fusion étagée suivant la configuration de Teller-Ulam ou la bombe à fission dopée. Pour une liste plus complète de la série d'essais nucléaires, voir la liste des essais nucléaires. Certaines estimations de puissance, comme celle dégagée par la Tsar Bomba, celles des tests effectués par l'Inde, et le Pakistan en 1998, sont contestées par les spécialistes. Nota 2 : certains essais nucléaires ont pu occasionner des retombées affectant des populations civiles, notamment pour les essais de bombe A (à fission), ainsi que les écosystèmes locaux. Calcul de la puissance et controverseLes puissances des explosions nucléaires peuvent être très difficiles à évaluer. Même dans des conditions expérimentales très contrôlées, les puissances précises peuvent être très difficiles à déterminer, et pour des conditions moins contrôlées les marges d'erreur peuvent être très grandes. Les puissances peuvent être calculées de plusieurs façons, via des calculs basés sur la taille du souffle de l'explosion, sa luminosité, des données sismographiques, et la force de l'onde de choc. Enrico Fermi a fait un calcul approximatif (très) célèbre de la puissance de l'essai Trinity en lâchant des petits morceaux de papier dans l'air et en mesurant la distance à laquelle ils ont été emportés par l'onde de choc de l'explosion. ![]() Une bonne approximation du rendement du dispositif d'essai Trinity a été obtenu par le physicien britannique Geoffrey Ingram Taylor à partir d'une simple analyse dimensionnelle[4]. Taylor a noté que le rayon R de l'explosion ne doit initialement dépendre que de l'énergie E de l'explosion, du temps t après la détonation, et de la densité de l'air ρ. La seule façon d'obtenir une dimension homogène à une longueur à partir de ces paramètres est :
En utilisant l'image de l'essai Trinity représenté ci-contre (qui avait été rendu publique par le gouvernement des États-Unis et publiée dans le magazine Life[4]), Taylor estime qu'à l'instant t = 0,025 s le rayon de l'explosion était de 140 mètres. Prenant ρ à 1 kg/m3 et en résolvant E, il a obtenu que la puissance de l'explosion était d'environ 22 kilotonnes de TNT (90 TJ). Ce calcul très simple est en accord avec la valeur officielle du rendement de la bombe à 10 % près (20 kilotonnes de TNT, soit 84 TJ). Cette valeur, à l'époque où Taylor a publié son résultat, était une information hautement classifiée[5]. Lorsque ces données ne sont pas disponibles, comme dans un certain nombre de cas, les puissances précises sont discutées, en particulier lorsqu'elles sont liées à des questions de politique. Les armes utilisées dans des bombardements atomiques d'Hiroshima et de Nagasaki, par exemple, avaient des conceptions très particulières, si bien qu'estimer leur puissance est assez difficile a posteriori. La bombe d'Hiroshima, "Little Boy", est estimée avoir développé une puissance de 12 à 18 kilotonnes de TNT (entre 50 et 75 TJ) (soit une marge de 20 % d'erreur), alors que la bombe de Nagasaki, "Fat Man", est estimée avoir eu une puissance située entre 18 et 23 kilotonnes de TNT (soit entre 75 et 96 TJ) (10 % de marge d'erreur). Ces incertitudes apparemment faibles peuvent avoir de l'importance lorsqu'on essaie d'utiliser les données de ces explosions pour extrapoler les effets d'autres bombes en situation réelle. Souvent on évalue également la puissance d'une bombe en "équivalent Hiroshima". Par exemple, la bombe à hydrogène Ivy Mike était équivalente à 867 ou 578 bombes d'Hiroshima – une différence assez importante (bien que purement théorique) selon que l'on utilise l'évaluation haute ou basse. D'autres puissances ont été contestées, notamment celle de la bombe Tsar Bomba. Sa puissance a été revendiquée à "seulement" 50 mégatonnes de TNT (210 PJ) ou jusqu'à un maximum de 57 mégatonnes de TNT (240 PJ) par différentes personnalités politiques. Notes et références
AnnexesArticles connexes
Liens externes
|
Portal di Ensiklopedia Dunia