Porosité

La porosité[1] est l'ensemble des vides (pores) d'un matériau, ces vides sont remplis par des fluides (liquides ou gaz). Les matériaux poreux sont très généralement des solides, mais il existe aussi des liquides poreux et des assemblages qui sont poreux, tels que les tas de grains ou les poudres[2]. La porosité est aussi une grandeur physique définie comme le rapport entre le volume des vides et le volume total d'un milieu poreux, sa valeur est comprise entre 0 et 1 (ou, en pourcentage, entre 0 et 100 %) :

où :

  • est la porosité,
  • le volume des pores,
  • et le volume total du matériau, c'est-à-dire la somme du volume de solide et du volume des pores.

La porosité d'un substrat conditionne ses capacités d'écoulement et de rétention (voir aussi « Loi de Darcy »). :

Type de porosité

id Hydrosout
Vides des roches — formes de l’eau souterraine (hydraulique souterraine).

La porosité peut avoir diverses origines, propre au matériau et à son évolution dans le temps, ce qui conduit à des pores de taille et de géométrie différentes, plus ou moins interconnectés.

Selon la forme et l'origine des pores[réf. nécessaire]

On[Qui ?] distingue ainsi la porosité de pores (ou « porosité primaire ») et la porosité de fissures (ou « porosité secondaire ») :

  • un pore est un espace dont les dimensions dans les trois directions de l'espace sont similaires, il peut s'agir de l'espace entre les grains d'une roche sédimentaire (gravier ou sable par exemple) ou d'espaces internes au matériau (dans le charbon, les schistes ou le charbon de bois par exemple) ;
  • une fissure est un espace vide dont la dimension dans une direction de l'espace est nettement inférieure à celles dans les deux autres. La porosité de fissure provient des contraintes mécaniques ou thermiques subies par le matériau au cours des âges (ou à la suite de travaux qui ont perturbé l'équilibre de compression/décompression). Une forte porosité secondaire augmente la vitesse de transit du fluide et diminue les capacités de filtration/rétention du substrat. Dans l'industrie pétrolière et gazière ou dans d'autres contextes (ex : stimulation d'un captage par forage d'eau), la fracturation hydraulique de la roche vise à en augmenter la « porosité de fracture » : résultant en une augmentation de la macro-porosité, et un amoindrissement de la micro-porosité ;
  • la métallurgie des poudres permet (par frittage) de produire des métaux poreux[3] ;
  • une autre forme de porosité peut résulter d'une condensation de « lacunes » dans un cristal. Il s'agit en général de pores fermés, situés au sein d'un cristal ou à ses interfaces joint de grain (interface métal/oxyde...), qui nécessitent des techniques de mesure de taux de porosité spécifiques[4].
  • Les matériaux granulaires[2] utilisés dans les procédés chromatographiques (procédés d'adsorption des gaz et des liquides, procédés d'échanges d'ions, procédés chromatographiques de séparation et de purification…) sont très poreux car ils fonctionnent soit par leur surface interne soit par des groupements fonctionnels situés dans le volume du grain. La porosité est essentielle car elle permet l'accès des molécules aux surfaces et groupements à l'intérieur du grain. Il y a deux grands types de matériaux : les charbons actifs et les résines ou gels. Le charbon actif est produit à partir de bois, de noix de coco et de houille. Les charbons ont les micro et mésoporosité du matériau d'origine ce qui conduit à des surfaces spécifiques très importantes (typiquement, plus de 1 000 m2/g). Les résines échangeuses d'ions et les gels sont des polymères réticulés, c’est-à-dire dont les chaînes sont espacées par une chaîne secondaire (polystyrène – divinylbenzène, acrylique…). La porosité est constituée par l'espace entre les chaînes du polymère. Elle atteint 80 % du volume du grain. Pour faciliter l'accès, on peut aussi créer des macropores au moment de la polymérisation, sortes "d'autoroutes" facilitant le transfert.

Selon la taille des pores

On peut distinguer les pores par leurs tailles, car celles ci leurs confèrent des propriétés différentes. Les classes de tailles utilisées varient selon les domaines :

Physique des milieux continus

En physique des milieux continus, l'IUPAC définit les porosités suivantes[5] :

  • microporosité : relatif aux pores dont le diamètre n'excède pas les 2 nanomètres (nm) ;
  • mésoporosité : relatif aux pores dont le diamètre est compris entre 2 et 50 nanomètres ;
  • macroporosité : relatif aux pores dont le diamètre est supérieur à 50 nanomètres.

Sciences des sols

L'eau gravitaire circule dans la macroporosité qui ne retient que l'air. L'eau capillaire qui occupe la mésoporosité et l'eau pelliculaire qui occupe la microporosité, favorisent la rétention hydrique. Les pédologues estiment qu'une porosité totale de 40 % (2 volumes de trous pour 3 volumes de composants solides) et une macroporosité de 10 % sont un minimum pour que l'oxygène ne limite pas la respiration racinaire, mais ces valeurs dépendent de la connectivité porale[6] (degré de relation des pores)[7].
La vase atteint une porosité totale de 60 à 80 % avec une tendance à augmenter en condition de séchage. L'embourbement résulte du rôle de la micro- et mésoporosité dans le piégeage de la phase mouillante.

En science du sol (pédologie) les classes utilisées sont les suivantes[8]:

  • microporosité : relative aux pores dont le diamètre n'excède pas les 2 micromètres (µm) ;
  • mésoporosité : relative aux pores dont le diamètre est compris entre 2 et 50 micromètres ;
  • macroporosité : relative aux pores dont le diamètre est supérieur à 50 micromètres.

La « porosité multimodale » est celle de solides comportant deux types de porosité (micro-mésoporeux par exemple).
Dans le cas de pores connectés, le fluide contenu dans les pores s'écoule beaucoup plus rapidement dans les pores de grande taille, formant la macroporosité (écoulement de l'eau), que dans ceux de petite taille, formant la microporosité (forces de capillarité retenant l'eau). La macroporosité favorise l'aération des sols et la fourniture d'oxygène aux organismes vivants du sol, la microporosité constitue un réservoir d'eau et d'échanges de nutriments pour ces organismes[9]. L'eau de gravité (appelée aussi eau libre ou eau de saturation) contenue dans les espaces lacunaires (entre les agrégats) qui s'écoule par gravité vers la nappe, emprunte la macroporosité et s'écoule verticalement à des vitesses fonction du diamètre des pores. Le point de ressuyage (quantités d'eau maximum que le sol peut retenir) correspond à la fin d'écoulement de l'eau par gravité et à l'eau utilisable pour les plantes (notion de réserve utile en eau d'un sol). Il est obtenu lorsque l'eau capillaire (dite aussi eau funiculaire) qui remplit les espaces lacunaires de la mésoporosité est abondamment trempée par les précipitations, les arrosages ou les irrigations. Cela prend en général 2 à 3 jours après qu’une pluie a gorgé le sol en eau dans des sols perméables et de structure et texture uniformes[10]. Les racines absorbent cette eau jusqu'au point de flétrissement temporaire (caractéristique des espèces végétales et de chaque variété), réversible, puis jusqu'au point de flétrissement permanent qui est atteint lorsque la force de rétention de l'eau par les particules du sol (eau pelliculaire retenue sous forme de films très minces autour des particules) égale la force de succion maximale exercée par la plante[11]. La quantité d'eau théoriquement utilisable est la différence d'humidité entre le point de ressuyage et le point de flétrissement.

Selon la nature des pores

Les pédologues distinguent la porosité biologique ou tubulaire (biopores générés par l'activité biologique[12]), la porosité texturale (microporosité créée par l'assemblage des particules) et la porosité structurale (macroporosité entre les agrégats, intégrant la porosité fissurale[13], biologique, voire d'origine culturale)[14],[15].

Porosité et exploitation de ressource souterraines

Dans le contexte de l'exploitation de ressources souterraines on distingue :

  • porosité occluse ou fermée : c'est la porosité des pores non accessibles par les agents extérieurs (inutilisables pour l'exploitation de la ressource) ;
  • porosité libre : par opposition à la porosité occluse ou fermée ;
  • porosité piégée : c'est une porosité libre ne permettant pas la récupération des fluides piégés ;
  • porosité utile : c'est la porosité qui permet la récupération de la phase piégée (terme principalement utilisé par les pétroliers) ;
  • porosité résiduelle : c'est la porosité due aux pores ne communiquant pas entre eux ou avec le milieu extérieur ;
  • porosité totale : c'est la somme de la porosité utile et de la porosité résiduelle ;
  • porosité efficace : c'est un terme surtout employé en hydrogéologie, qui caractérise le réseau de pores où l'eau circule et est récupérable.

Les roches poreuses

Elles peuvent capter et stocker des fluides (gaz ou liquides). On les dit « roches réservoirs » . Le fluide stocké peut être du gaz naturel, du pétrole, du bitume ou de l'eau ; il peut être arrivé naturellement (réserves naturelles de pétrole ou de gaz) ou avoir été injecté par l'homme (stockages souterrains).

Porosité et procédés chromatographiques

Les charbons actifs, les résines échangeuses d'ions, les gels, sont utilisés en couche appelé lit (en physique : empilement) dans une colonne dans laquelle on fera passer le fluide à traiter[16]. On définit la porosité intergranulaire ou porosité du lit comme le rapport du volume entre les grains au volume total du lit (sans tenir compte de la porosité des grains eux-mêmes), notée φ au début de cet article. Dans ce domaine, la porosité du lit est notée ε. Elle vaut environ 0,4 pour des lits peu tassés de grains de 1 mm . Pour des grains plus fins et des lits tassés, elle descend à 0,35-0,37 (chromatographie des protéines). Notons que, théoriquement, pour des grains sphériques de même diamètre, la porosité du lit ne dépend pas du diamètre de grain[2]. C'est la même pour un tas de pierre et un kg de farine. Elle atteint théoriquement 0,26 pour un empilement compact de type hexagonal.

Modèles de porosité

Modèles statistiques

Les modèles statistiques consistent à définir une fonction de points f(M), où M est un point dépendant des coordonnées d'espaces.

On attribue alors la valeur 1 à la fonction si le point M se situe dans le vide, et la valeur 0 si le point se situe dans le solide.

Ces modèles permettent de modéliser dans l'espace la porosité d'un matériau. Cependant ils donnent de mauvais résultats qualitatifs.

Arrangements de sphères

Faisceau capillaire - Modèle de Purcell

Ce modèle permet de modéliser la porosité mais également la perméabilité. Il consiste à définir un certain nombre de capillaires droits qui traversent le matériau. Ce modèle est satisfaisant conceptuellement mais dans la pratique il représente mal la réalité. En effet, les capillaires sont droits et ne communiquent pas entre eux.

Rose et Bruce ont amélioré ce modèle en prenant en compte la tortuosité « Τ » des capillaires.

Modèle en réseau de Fatt (1956)

Modèle de Houpeurt et Ehrlich

Mesure de la porosité

Pour mesurer la porosité, on peut déterminer trois paramètres :

  • Vt, qui est le volume total de l'échantillon ;
  • Vs, qui est le volume de l'échantillon sans sa porosité ;
  • Vp, qui est le volume des pores.

Méthodes directes de mesures au laboratoire

On distingue :

  • les mesures sur échantillons non-remaniés ;
  • les mesures sur des échantillons remaniés.

Mesure de la porosité sur des échantillons non-remaniés

Il existe une seule méthode qui est dite "de sommation des fluides". Elle implique d'enrober l'échantillon (avec de la paraffine par exemple) à la sortie du carottage, pour que les fluides présents dans la porosité ne s'échappent pas.

Les volumes d'air sont mesurés à l'aide d'un porosimètre à mercure. Les volumes d'eau et d'hydrocarbures sont mesurés par distillation fractionnée à température ordinaire.

Mesure de la porosité sur des échantillons remaniés

En laboratoire, les échantillons doivent être dans le même état physique avant de réaliser les mesures, ce qui impose de les préparer. Il faut tout d'abord extraire les fluides de l'échantillon, avec, par exemple :

Mesure du volume total Vt
Mesure de Vs
Mesure de Vp à l'aide d'un porosimètre à mercure

Il s'agit d'injecter sous pression un volume de mercure à l'échantillon.

Le mercure remplit les vides d'un échantillon du matériau préalablement séché. Il ne reste qu'à regarder le volume de mercure injecté pour avoir le volume des pores ainsi que la distribution de la taille des pores.

Détermination de la porosité in situ : diagraphies

Diagraphie neutron

Une sonde envoie des neutrons dans un puits. Ceux-ci se réfléchissent sur les hydrogènes de l'eau et reviennent à un récepteur ralentis. Le capteur compte le nombre de neutrons revenus. Cette méthode n'est pas fiable pour les sols contenant une trop grande fraction d'argiles. De plus elle a l'inconvénient de faire l'hypothèse que le sol est saturé en eau.

Mesure de la résistivité du terrain

À l'exception des argiles, les matériaux usuels du sol sont isolants, mais l'électricité circule dans la phase mouillée du sol.

De ce fait, en faisant l'hypothèse de sols saturés en eau, la résistivité du sol sera fonction de la porosité.

Notes et références

  1. JM Vallée, « Etude de la prorsité et de la perméabilité », sur Eole Normale Supèrieure de Lyon, (consulté le )
  2. a b et c Cendrine Gatumel et al., « Science et technologie des poudres », sur Ecole des Mines d'Albi, (consulté le )
  3. Jernot J.P (1985) Analyse morphologique des milieux poreux. In Annales de chimie (Vol. 10, No. 4, p. 319-330). Lavoisier.
  4. « La mesure du taux de porosité sur pièce », sur MetalBlog,
  5. (en) J. Rouquerol et al., « Recommendations for the characterization of porous solids (Technical Report) », Pure & Appl. Chem, vol. 66,‎ , p. 1739–1758 (DOI 10.1351/pac199466081739, lire en ligne [free download pdf])
  6. Porosité « ouverte » lorsque les pores sont connectés entre eux, porosité « fermée » lorsqu'ils sont sans communication.
  7. Marc-André Selosse, L'origine du monde. Une histoire naturelle du sol à l'intention de ceux qui le piétinent, Actes Sud Nature, , p. 150.
  8. https://sols-et-territoires.org/fileadmin/user_upload/archive/Produits_Reseau/documents_etudes/resultats_Axe2/Guide_ReservoirUtilisable_2022.pdf
  9. Michel-Claude Girard, Christian Schvartz, Bernard Jabiol, ÉEtude des sols. Description, cartographie, utilisation, Dunod, (lire en ligne), p. 92.
  10. (en) F. J. Veihmeyer et A. H. Hendrickson, « The moisture equivalent as a measure of the field capacity of soils », Soil Science, vol. 32, no 3,‎ , p. 181–194 (ISSN 0038-075X, DOI 10.1097/00010694-193109000-00003, lire en ligne, consulté le )
  11. Jean-Michel Gobat, Michel Aragno, Willy Matthey, Le sol vivant : bases de pédologie, biologie des sols, PPUR Presses polytechniques, , p. 62.
  12. Galeries des micro-organismes telluriques, des racines et radicelles, ou des animaux fouisseurs, qui facilitent la circulation de l'eau et de l'air.
  13. Réseau de fentes de retrait limitant les agrégats du sol.
  14. Denis Baize, Petit lexique de pédologie, éditions Quæ, , p. 15
  15. Pierre Stengel, « Utilisation de l'analyse des systèmes de porosité pour la caractérisation de l'état physique du sol in situ », Annales agronomiques, vol. 30, no 1,‎ , p. 27-51
  16. Valérie Jeanne-Rose, Axelle Durimel, Nady Passé-Courtin et Sarra Gaspard, Eaux industrielles contaminées. Chapitre VIII. Les charbons actifs pour le traitement des eaux usées, Besançon, Presses universitaires de Franche-Comté, , 512 p. (ISBN 9782848677583, lire en ligne), p. 241-273

Voir aussi

Sur les autres projets Wikimedia :

Articles connexes

Liens externes

Read other articles:

Флаг гордости бисексуалов Бисексуальность      Сексуальные ориентации Бисексуальность Пансексуальность Полисексуальность Моносексуальность Сексуальные идентичности Би-любопытство Гетерогибкость и гомогибкость Сексуальная текучесть Исследования Шка…

Method of building airframes A stripped down tube and fabric constructed fuselage from a Piper PA-18 Super Cub Tube-and-fabric construction is a method of building airframes, which include the fuselages and wings of airplanes. It consists of making a framework of metal tubes (generally welded together) and then covering the framework with an aircraft fabric covering. The tubes are usually of steel or aluminum. The advantages of tube-and-fabric construction over other methods of airframe construc…

Indian film director K. VijayanBornK. Sathyanathan7 December 1939Tirur, Kerala, British IndianDied21 July 1988 (aged 48)ChennaiOccupation(s)Director producer actorYears active1969–1988 K. Vijayan was an Indian film director. He predominantly worked in Tamil cinema. He mainly worked with Sivaji Ganesan.[1] He directed many Malayalam films as well. Career K. Vijayan was an employee of the Golden Rock Railway Workshop in Tiruchirappalli.[2] His first role as lead actor was po…

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁地…

此條目可参照英語維基百科相應條目来扩充。 (2021年5月6日)若您熟悉来源语言和主题,请协助参考外语维基百科扩充条目。请勿直接提交机械翻译,也不要翻译不可靠、低品质内容。依版权协议,译文需在编辑摘要注明来源,或于讨论页顶部标记{{Translated page}}标签。 约翰斯顿环礁Kalama Atoll 美國本土外小島嶼 Johnston Atoll 旗幟颂歌:《星條旗》The Star-Spangled Banner約翰斯頓環礁地…

李光耀逝世及葬礼李光耀(1923年-2015年)日期2015年3月23日-2015年3月29日地点新加坡斯里淡马锡(私人守灵)新加坡国会大厦(民众瞻仰)新加坡国立大学文化中心(国葬)万礼火葬场(英语:Mandai Crematorium and Columbarium)(火葬)网站www.rememberingleekuanyew.sg 2015年3月23日凌晨3時18分(新加坡標準時間),新加坡建国后首任总理、前內閣资政和执政人民行动党首任秘书长李光耀因…

American college football season 2019 North Carolina Tar Heels footballMilitary Bowl championMilitary Bowl, W 55–13 vs. TempleConferenceAtlantic Coast ConferenceDivisionCoastalRecord7–6 (4–4 ACC)Head coachMack Brown (11th season)Offensive coordinatorPhil Longo (1st season)Co-defensive coordinatorJay Bateman (1st season)Co-defensive coordinatorTommy Thigpen (1st season)CaptainBritish Brooks, Myles Dorn, Charlie Heck, Sam Howell, Jason StrowbridgeHome stadiumKenan Me…

泰国陆军元帅他侬·吉滴卡宗ถนอม กิตติขจรPChW SR MPCh MWM第10任泰國總理任期1963年12月9日—1973年10月14日君主拉玛九世前任沙立·他那叻元帥继任訕耶·探瑪塞任期1958年1月1日—1958年10月20日君主拉玛九世前任乃朴·沙拉信继任沙立·他那叻元帥第32任泰國國防部長任期1957年9月23日—1973年10月14日前任鑾披汶·頌堪继任他威·尊拉塞(英语:Dawee Chullasapya) 个人资料出生(…

ヨハネス12世 第130代 ローマ教皇 教皇就任 955年12月16日教皇離任 964年5月14日先代 アガペトゥス2世次代 レオ8世個人情報出生 937年スポレート公国(中部イタリア)スポレート死去 964年5月14日 教皇領、ローマ原国籍 スポレート公国親 父アルベリーコ2世(スポレート公)、母アルダその他のヨハネステンプレートを表示 ヨハネス12世(Ioannes XII、937年 - 964年5月14日)は、ロー…

Частина серії проФілософіяLeft to right: Plato, Kant, Nietzsche, Buddha, Confucius, AverroesПлатонКантНіцшеБуддаКонфуційАверроес Філософи Епістемологи Естетики Етики Логіки Метафізики Соціально-політичні філософи Традиції Аналітична Арістотелівська Африканська Близькосхідна іранська Буддійсь…

This article is about the writer and playwright. For other people with the same name, see Paul Smith. Paul SmithBorn(1920-10-04)October 4, 1920Dublin, IrelandDiedJanuary 11, 1997(1997-01-11) (aged 76)Dublin, IrelandLanguagePlaywrightNationalityIrish Paul Smith (4 October 1920, Dublin, Ireland – 11 January 1997, Dublin) was an Irish writer and playwright. Biography Smith was born near Charlemont Street in Dublin, the son of a wheelwright. He became involved with the Gate Theatre at 16 year…

Duta Besar Suriname untuk IndonesiaPetahanaErick Rahmat Moertabatsejak 2023 Berikut adalah daftar duta besar Republik Suriname untuk Republik Indonesia. Nama Mulai tugas Kredensial Selesai tugas Ref. Soeratno Setroredjo 29 Juli 1996 [1] Sahidi Rasam 9 Desember 2003 [2] Angelic Alihusain-Del Castilho Januari 2007 Januari 2011 [3] Titi Amina Pardi 10 Agustus 2011 [4] Abas Benz Kono 13 Februari 2019 [5] Erick Rahmat Moertabat 20 Februari 2023 Petahana &#…

University college in Penang, Malaysia Allianze University College of Medical Sciences was a private higher learning institution situated in Kepala Batas, Pulau Pinang. The college offered courses in various fields such as medicine, hospitality, tourism, sports science, and allied health sciences. However, it closed in 2014 due to protests from unpaid staff and an unsuccessful attempt to establish a branch in London, England.[1] The unoccupied Trent Park House in August 2015. In 2013, th…

Atol Haa DhaaluNegaraMaladewaAtol-atol terkaitThiladhunmathi DekunuburiLokasi6° 48' N and 6° 30' NIbukotaKulhudhuffushiPemerintahan • Kepala Atol-Populasi • Total23.875Kode posBKode pos DhivehiHDh (ހދ)• Jumlah pulau38• Pulau berpenghuniFiney Hanimaadhoo Hirimaradhoo Kulhudhuffushi Kumundhoo Kunburudhoo MakunudhooKurinbi Naivaadhoo Nellaidhoo Neykurendhoo Nolhivaram Nolhivaranfaru Vaikaradhoo• Pulau tidak berpenghuniBodunaagoashi, Dafaru Fasgandu, Dhorukanduhuraa…

Questa voce sull'argomento aeroporti dell'Australia è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Aeroporto di Perthaeroporto Codice IATAPER Codice ICAOYPPH Nome commerciale(EN) Perth Airport DescrizioneTipoCivile ProprietarioPerth Airport Pty. Ltd. Stato Australia Stato federato Australia Occidentale CittàPerth Hub Alliance Airlines Cobham Network Aviation Qantas Skippers Aviation Virgin Australia Regional Base Jetstar Airways Virgin Austral…

Australian cycling team Team BridgeLaneTeam informationUCI codeBLNRegisteredAustraliaFounded2015 (2015)Discipline(s)RoadStatusNational (2015–2017)UCI Continental (2018–)BicyclesCerveloComponentsShimanoWebsiteTeam home pageKey personnelGeneral managerThomas PettyAndrew Christie-JohnsonTeam manager(s)Andrew Christie-JohnsonNeil WalkerTeam name history2015–201720182019–Mobius Future RacingMobius–BridgeLaneTeam BridgeLane Team BridgeLane (UCI team code: BLN) is an Australian UCI Conti…

Kōsuke MoritaKōsuke Morita, professor of the faculty of science, Kyushu University, attending the press conference for the official announcement of nihonium in Fukuoka City, Fukuoka Prefecture, on December 1, 2016Born (1957-01-23) January 23, 1957 (age 67)Kitakyushu, Fukuoka, JapanNationalityJapaneseAlma materKyushu UniversityOccupationExperimental nuclear physicistEmployer(s)Kyushu University; RikenKnown forDiscovery of element 113 Kōsuke Morita (Japanese: 森田 浩介 Hepbur…

Israeli mentalist and illusionist (1971–) Guy BavliBorn (1971-08-24) August 24, 1971 (age 52)Tel Aviv, IsraelOccupationCEO: Master of the MindYears active1979–presentKnown forMentalist, illusionist, lecturer, TV personalityWebsitewww.masterofthemind.com Guy Bavli (Hebrew: גיא בבלי; born 1971)[1] is an Israeli mentalist, illusionist, actor and lecturer. He is known for being the first Israeli citizen to win an international magic competition in the United…

Governing body for canoeing and kayaking Canoeing South AfricaSportCanoeingKayakingJurisdictionSouth AfricaAbbreviationCSAFounded1956 (1956)[1]AffiliationInternational Canoe FederationRegional affiliationAfrican Canoe ConfederationPresidentKim Pople[2]SecretaryColin SimpkinsOfficial websitewww.canoesa.org.za Canoeing South Africa is the governing body for the sport of canoeing and kayaking in South Africa.The body is affiliated to the International Canoe Federation (ICF) and…

Foto 1898 di Ernest Hergt alla Steinway Hall, Chicago (accanto a Guilmant è Clarence Eddy) Félix Alexandre Guilmant /alɛk'sɑ̃dʁ gil'mɑ̃/ (Boulogne-sur-Mer, 12 marzo 1837 – Meudon, 29 marzo 1911) è stato un compositore e organista francese. Indice 1 Biografia 2 Opere principali 3 Voci correlate 4 Altri progetti 5 Collegamenti esterni Biografia Apprezzato concertista d'organo, con molte tournée in Europa e in America al suo attivo, Guilmant viene nominato, nel 1871, organista della chi…