Partie imaginaire

Symbole I en écriture Fraktur.
Une illustration du plan complexe. La partie imaginaire d'un nombre complexe est .

En mathématiques, la partie imaginaire d’un nombre complexe qui s'écrit sous la forme (où et sont des réels) est . Autrement dit, si le nombre complexe a pour image le point de coordonnées dans le plan, alors sa partie imaginaire est . Il s'agit d'un nombre réel.

La partie imaginaire est notée Im{z} ou {z}, où est un I capital en caractères Fraktur.

En utilisant la notion de conjugué d'un nombre complexe , la partie imaginaire de est égale à .

Pour un nombre complexe sous forme polaire, , les coordonnées cartésiennes (algébriques) sont , ou de façon équivalente, . Il découle de la formule d'Euler que , et donc que la partie imaginaire de est .


Voir aussi

 

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia