Nombre de DemloEn mathématiques récréatives, un nombre de Demlo, aussi appelé merveilleux nombre de Demlo, a été défini par D. R. Kaprekar comme le carré d'un répunit. Ils portent le nom de la gare de Demlo, située à 50 km de Bombay, endroit où Kaprekar a commencé à les étudier[1]. Les onze premiers nombres de Demlo en base 10 sont 1, 121, 12321, 1234321, … , 12345678987654321, 1234567900987654321 et 123456790120987654321[2],[3]. DéfinitionUn nombre de Demlo en base est un nombre de la forme pour . Si , un tel nombre est (en base ) un nombre palindrome à chiffres et, plus précisément, de la forme c'est-à-dire que (lu de gauche à droite) ses premiers chiffres sont les premiers chiffres en base dans l'ordre croissant, et ses derniers chiffres sont les mêmes chiffres dans l'ordre inverse[4].
Références(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Repunit » (voir la liste des auteurs).
|
Portal di Ensiklopedia Dunia