Milieu d'un segmentEn géométrie affine, le milieu d'un segment est l'isobarycentre des deux extrémités du segment. Dans le cadre plus spécifique de la géométrie euclidienne, c'est aussi le point de ce segment situé à égale distance de ses extrémités. Symétrie centraleDeux points distincts A et A' sont symétriques par rapport à un point O si et seulement si O est le milieu du segment [AA']. Dans la symétrie centrale de centre O, le symétrique de O est O lui-même. Milieu, médiatrice, plan médiateurL'ensemble des points du plan équidistants de deux points A et B constitue la médiatrice du segment [AB]. Le milieu du segment [AB] peut donc être défini comme l'intersection de la droite (AB) avec la médiatrice du segment [AB]. Cette définition est intéressante, car elle permet de placer le milieu du segment [AB] par une construction à la règle et au compas. Construction du milieu à la règle et au compas — Soient deux points du plan A et B.
Dans l'espace à trois dimensions, le milieu d'un segment est l'intersection de ce segment avec son plan médiateur. Caractérisation vectorielleDans un espace affine, le milieu d'un segment [AB] est l'isobarycentre de la paire {A, B}, c'est-à-dire le seul point I tel que
Cette égalité est équivalente à chacune des propriétés suivantes :
CoordonnéesSi le plan (ou l'espace) euclidien est muni d'un repère cartésien, les coordonnées du milieu d'un segment sont les demi-sommes de chacune des coordonnées des extrémités du segment. Autrement dit, dans le plan, le milieu du segment d'extrémités A(xA ; yA) et B(xB ; yB) est le point de coordonnées . On a une propriété analogue dans l'espace en ajoutant une troisième coordonnée. Dans un triangleLes milieux des trois côtés d'un triangle jouent un rôle important à plusieurs niveaux. Parmi les droites remarquables du triangle, on distingue notamment les médiatrices des côtés et les médianes, qui sont les droites passant par un sommet et le milieu du côté opposé. Le théorème des milieux dans un triangle s'énonce ainsi : Théorème des milieux — Si une droite passe par les milieux de deux côtés d'un triangle alors elle est parallèle au troisième côté. La longueur du segment joignant les milieux de deux côtés d'un triangle est égale à la moitié de celle du troisième côté. Une réciproque de la première assertion du théorème existe : Théorème — Si une droite passe par le milieu d'un des côtés d'un triangle et si elle est parallèle à un autre côté alors elle coupe le troisième côté en son milieu. |