Source = fil rectiligne infini dans le vide parcouru par un courant de I = 10 A ; champ mesuré à une distance r = 2 cm du fil (les lignes du champ sont alors circulaires centrées sur le fil)
Source = aimant permanent ; champ mesuré à quelques millimètres de sa surface
La fabrication de champs magnétiques intenses (supérieurs à 1 T) nécessite l'emploi d'un électroaimant constitué d'un bobinage de fil conducteur appelé solénoïde parcouru par un courant électrique.
Problèmes rencontrés
Le dispositif de l'électro-aimant est sujet à deux limitations :
l'effet Joule, qui tend à faire fondre les fils du bobinage lorsque l'énergie à dissiper sous forme de chaleur devient trop grande pour le matériau ;
la « pression magnétique », action mécanique sur le bobinage résultante des forces de Lorentz sur les fils. Cette pression magnétique radiale est dirigée vers l'extérieur de la bobine et tend à faire éclater celle-ci.
Solutions techniques
Pour contrer l'effet Joule, deux possibilités sont utilisées :
l'utilisation d'un matériau supraconducteur sous sa température critique. Cette possibilité est limitée, car il existe un champ magnétique critique au-dessus duquel la supraconductivité du matériau disparait.
le refroidissement liquide du bobinage pour évacuer l'excédent d'énergie Joule. Un débit typique de 300 litres d'eau par seconde permet d'atteindre une trentaine de teslas...
Pour contrer la pression magnétique, il faut utiliser un conducteur plus solide que le cuivre et construire des renforts mécaniques extérieurs au bobinage.
Ordre de grandeurs
Champs statiques
Source = électro-aimant de Faraday (1840)
Source = électro-aimant de 50 tonnes installé au laboratoire Bellevue (début du XXe siècle), consommant une puissance de 100 kW
Source = électro-aimant à bobinage supraconducteur (début du XXIe siècle)
Source = électro-aimant à refroidissement liquide (début du XXIe siècle)
Source = électro-aimant hybride (supraconducteur + refroidissement liquide - début du XXIe siècle) consommant une puissance de 20 MW
Il n'est guère possible de faire mieux actuellement (le record obtenu en 2019 est de 45,5 T[3]). Pour aller plus haut, on utilise un courant transitoire, qui ne circule que pendant une brève durée, de façon à laisser le bobinage refroidir ensuite. On fabrique ainsi des champs dit pulsés.
Champs pulsés sans destruction de la source
Source = électro-aimant monolithique renforcé (début du XXIe siècle)
Geert Rikken ; La physique en champ magnétique intense, conférence donnée à l'Université de Tous Les Savoirs (). Vidéo disponible au format Real Video.
↑(en) Seungyong Hahn, Kwanglok Kim, Kwangmin Kim, Xinbo Hu, Thomas Painter et al., « 45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet », Nature, (DOI10.1038/s41586-019-1293-1).