En mathématique, la formule de Liouville (parfois appelée théorème de Liouville ou bien formule/théorème de Jacobi-Liouville[1]ou encore identité d'Abel[2]) donne l'expression du wronskien d'un système d'équations différentielles linéaires du premier ordre , c'est-à-dire le déterminant d'une famille de solutions.
La formule est nommée d'après le mathématicien français Joseph Liouville.
Énoncé du théorème
Soit un intervalle réel et une fonction de vers les matrices carrées de dimension n. On considère le système d'équations différentielles homogènes du premier ordre
où l'inconnue est une fonction de à valeurs vectorielles. Si l'on a n solutions de (1), on peut considérer la « solution matricielle » Φ dont la -ème colonne est pour . Elle satisfait naturellement la même équation
Le wronskien est le déterminant de cette matrice, c.-à-d. .
De manière équivalente, si l'on introduit l'application résolvante qui envoie la valeur d'une solution au temps t0 à sa valeur au temps t, c.-à-d. solution de (1), on obtient
Démonstration
L'idée est de calculer la dérivée du wronskien et de résoudre l'équation différentielle que l'on obtient.
Rappelons que le déterminant de Φ est une somme de produit de ces coefficients, . Chaque terme (c.-à-d. pour une permutation donnée) contient précisément un seul coefficient de toute ligne ou colonne[3]. En appliquant les règles de dérivation d'une somme et d'un produit de fonctions, on obtient une somme contenant beaucoup plus de termes, mais chacune avec seulement un seul facteur dérivé . En regroupant tous ceux qui contient un coefficient d'une même ligne, on obtient
(C'est la formule de dérivation d'une application du type où m est une fonction linéaire en chaque ligne li). En utilisant maintenant (2), ou simplement la ligne i de cette égalité de matrices
.
Ainsi en soustrayant à la ligne i la combinaison linéaire de toutes les autres lignes, opération qui ne change pas le déterminant, on obtient
En insérant dans (a), on a
C'est une équation différentielle ordinaire linéaire homogène du premier ordre sur le wronskien dont (3) est la solution.
Lorsqu'on a déjà n – 1 solutions linéairement indépendantes de (1), on peut utiliser le wronskien pour déterminer une n-ième solution linéairement indépendante des n – 1 premières.
Notes et références
↑Robert Roussarie et Jean Roux, Des équations différentielles aux systèmes dynamiques I, Les Ulis, EDP Sciences, , 318 p. (ISBN978-2-7598-0512-9), p. 97.
↑Florent Berthelin, Équations différentielles, Paris, CASSINI, , 691 p. (ISBN978-2-84225-229-8), p. 44.
↑Par exemple, le seul coefficient de la colonne 3 dans un produit est et le seul coefficient de la ligne 2 est où est l'unique antécédent de 2 par la permutation .