Ascenseur spatial

Ascenseur spatial (vision d'artiste).

L’ascenseur spatial est un type de transport spatial entre la surface et une orbite autour de la Terre (ou d'un autre astre : lune (ascenseur spatial lunaire), autre planète).

Ce concept est fondé sur l'idée d'un câble maintenu tendu par la force centrifuge due à la rotation de la Terre sur elle-même. Pour être en équilibre, le câble doit s'allonger au-delà de l'orbite géostationnaire (36 000 km), à partir de laquelle la force centrifuge dépasse la force de gravitation. Une fois en place, des nacelles montant le long du câble permettraient de rejoindre l'orbite de façon plus économique qu'avec un lanceur spatial classique comme une fusée.

L'idée d'un ascenseur spatial, développée dans les années 1950 s'est heurtée à de nombreuses contraintes techniques, et en premier lieu à l'inexistence d'un matériau à la fois suffisamment léger et résistant pour résister à la tension engendrée par le poids propre du câble. La découverte dans les années 1980-1990 des nanotubes de carbone, dont les propriétés mécaniques théoriques pourraient être suffisantes, a relancé un certain intérêt pour cette idée, qui reste cependant pour l'instant du domaine de l'utopie ou de la science fiction.

Historique

Le concept d'ascenseur spatial a été inventé par le pionnier russe de l'astronautique Constantin Tsiolkovski en 1895[1]. Sur le modèle de la Tour Eiffel, achevée en 1889, il imagine une tour de 35 790 km de haut, qui permettrait d'amener par un ascenseur des charges en orbite géostationnaire.

Le concept de l'ascenseur spatial a été relancé par Yuri Artsutanov qui proposa en 1960 non plus une tour mais un câble suspendu depuis l'espace et en suggérant d'utiliser un dispositif similaire à une cabine d'ascenseur[2].

Dans ses travaux, en 1975, Jerome Pearson propose d'adopter une structure en forme de deux longs rubans, de part et d'autre d'un satellite en orbite géostationnaire. Une extrémité joue le rôle de contre-poids, qui évite d'arrimer trop solidement la base terrestre de l'ouvrage. Cela en fait un projet de 144 000 kilomètres de long (38 % de la distance TerreLune). Jerome Pearson redécouvre bien plus tard l'idée de Yuri Arsutanov (car les projets de celui-ci restèrent confidentiels).

En 1978, le romancier Arthur C. Clarke dévoile le concept au grand public dans son roman de science-fiction Les Fontaines du paradis. Il est aussi appelé « tour orbitale » (orbital tower). Clarke décrit la construction, à partir d'une station spatiale, d'une gigantesque tour destinée à constituer un lien fixe entre la surface terrestre et un « contre-poids » en orbite géostationnaire. L'équilibre de l'ensemble est assuré en permanence, par la construction d'un autre élément de tour dans la direction opposée. Au total, c'est une sorte de fronde de 72 000 kilomètres de long qu'il faut réaliser. La base nécessite de solides fondations : dans le roman de Clarke, la base de la tour est ancrée de plusieurs kilomètres dans le sous-sol.

Comme souvent, Clarke s'est inspiré de travaux scientifiques réels, en particulier de ceux de Pearson, et ceux de quatre autres Américains (John D. Isaacs, Hugh Bradner, George Edward Backus (en) de l'Institut d'océanographie Scripps et Allyn C. Vine (en) de l'institut océanographique de Woods Hole) ont publié le dans la revue Science (« Satellite elongation into a true "Sky Hook" »)[3].

Ingénierie de l’ascenseur

Schéma de principe d'un ascenseur spatial (image non à l'échelle).

Équilibre du système

L'ascenseur spatial pourrait prendre la forme d'un long câble sur lequel circuleraient des navettes.

Chaque portion du câble est soumise d'une part à l'attraction gravitationnelle terrestre, et d'autre part à l'accélération d'entraînement (la force centrifuge), qui s'équilibrent à l'altitude de l'orbite géostationnaire. La pesanteur domine en dessous de cette altitude, et il faut donc une longueur suffisante de câble (ou une masse suffisante, par exemple constituée du lanceur ayant lancé initialement le câble, ce qui permettrait de raccourcir ce dernier) au-dessus, pour assurer une tension vers le haut.

En dehors de celle à l'altitude de l'orbite géostationnaire, les sections du câble ont une vitesse de rotation différente de celle qu'elles auraient si elles étaient en orbite libre : plus lente en dessous et plus rapide au-dessus.

Construction

Brad Edwards, de la fondation californienne Eureka Scientific décrit en détail une méthode possible de construction d'un tel ascenseur (voir lien externe) :

  • tout d'abord, on lance un engin spatial en orbite géostationnaire ;
  • puis celui-ci envoie vers la Terre un mince ruban (1 micromètre d'épaisseur) présentant des caractéristiques mécaniques ad hoc (résistant et léger). Au fur et à mesure que le câble descend, le véhicule s'écarte de la Terre pour maintenir l'équilibre. Il atteint ainsi une distance de 72 000 km ;
  • une fois le premier câble amarré au sol, on s'en sert pour en mettre en place d'autres et constituer le câble définitif.

L'intérêt d'un tel système réside dans son faible coût de fonctionnement. Dans certains projets, l'énergie de freinage d'une cabine descendante peut même être récupérée pour propulser une cabine montante. Son inconvénient principal est sa vulnérabilité aux météorites, aux débris spatiaux, aux engins aériens ou même aux catastrophes naturelles.

Problématiques

Matériaux

Les matériaux classiques sont insuffisamment résistants, mais la découverte des nanotubes de carbone a fait réapparaître un certain intérêt pour cette idée, avec une résistance à la traction pouvant atteindre 80 GPa[a].

Des calculs ont été effectués, et ont démontré que le câble de nanotubes en question devrait mesurer environ un mètre de large, être aussi mince qu'une feuille de papier, et être apte à supporter une tension d'environ 63 GPa, équivalente à « une joute de souque à la corde opposant 100 000 personnes de chaque côté »[5].

Nicola Pugno (en) de l'École polytechnique de Turin fait cependant remarquer que les assemblages de nanotubes de carbone sur lesquels reposaient tous les espoirs ne seraient pas assez solides[6]. Dans un article du Journal of Physics : Condensed Matter[7], il ajoute que même dans le cas où l’ascenseur spatial pourrait être déployé, les micrométéorites et l’érosion par l’oxygène ne manqueraient pas de l’affaiblir.

Débris orbitaux

Image de la Terre et de la répartition des débris spatiaux jusqu'à l'orbite géosynchrone.

Outre la résistance du câble, il faudrait également résoudre le problème des collisions avec les satellites ou les débris spatiaux. Dans la situation de 2019, plus de 167 millions de débris pourraient croiser le câble, ce qui implique une dizaine d'impacts d'objets de moins de 10 cm par jour[8]. Un compartimentage du câble et des réparations par le passage régulier d'une cabine de maintenance pourraient traiter ces événements[8].

Cependant, il existe également plus de 29 000 objets capables potentiellement de sectionner le câble, dont les impacts pourraient avoir une fréquence allant d'une fois par semaine à une fois par an. Une solution potentielle serait de suivre précisément ces objets, et manœuvrer le câble à partir de la base pour les éviter[8].

Énergie

Le problème est de fournir l'énergie nécessaire pour monter une cabine de 20 tonnes, à une vitesse de l'ordre de 200 km/h, sur une distance de 36 000 km (il faudrait une puissance électrique de 300 Mégawatts), et de véhiculer la puissance sans trop de pertes jusqu'à la cabine[8]. Pour éviter de véhiculer trop de puissance à partir de la Terre, il est par exemple envisagé de déployer de vastes surfaces de panneaux solaires une fois la cabine sortie de l'atmosphère (soit après l'altitude de 150 km)[8].

Stabilité

Des oscillations longitudinales et transversales du câble peuvent être provoquées par de nombreux événements : vents rapides dans les couches hautes de l'atmosphère, force de Coriolis s'appliquant sur le câble et aux cabines qui tire l'ascenseur dans la direction opposée à la direction de la rotation de la Terre, d'autant plus forte que la vitesse de la cabine est grande[8]. Pour les oscillations longitudinales, la base devra être mobile pour accompagner les mouvements du câble, et pour les oscillations transversales des moteurs-fusées au niveau de la cabine peuvent être employés pour stabiliser[8].

Habitabilité

Représentation schématique des ceintures de Van Allen.

Le problème est notamment le franchissement des ceintures de Van Allen, qui contiennent une grande densité de particules énergétiques provenant du vent solaire[8]. La première, située entre 700 et 10 000 km d'altitude, est constituée principalement de protons à haute énergie (jusqu'à plusieurs centaines de MeV). La seconde plus large, se déploie entre 13 000 et 65 000 km d'altitude ; elle est constituée d'électrons également à haute énergie (> 5 MeV). À une vitesse de 200 km/h, le trajet des passagers les obligerait à rester plusieurs jours à l'intérieur de ces ceintures, alors que les astronautes de la mission Apollo les avaient franchies en moins d'une demi-heure.

Une protection est alors nécessaire pour les voyageurs humains, qui peut prendre la forme de lourds blindages de plomb ou d'eau. Dans un premier temps, l'ascenseur spatial sera réservé au transport de marchandises[8].

Travaux pratiques

La Spaceward Foundation, soutenue par la NASA, a organisé en 2005 (et annuellement jusqu'en 2009) un concours ayant pour objectif la conception d'un câble en nanotubes, le Tether Challenge (en). La récompense était de deux millions de dollars à l'équipe qui proposerait le câble en nanotubes le plus résistant, pourvu qu'il le soit au moins deux fois plus que le meilleur câble sur le marché[9], mais personne ne l'a revendiquée[4],[10],[b].

En 2012, l'entreprise japonaise du BTP Obayashi annonce son souhait de bâtir le premier ascenseur pour emmener des touristes dans l'espace à l'horizon 2050. En septembre 2018, des chercheurs de l'université de Shizuoka en collaboration avec cette entreprise vont envoyer vers la station spatiale internationale un premier petit démonstrateur à bord du cargo de ravitaillement HTV-7. Le décollage initialement prévu le 11 septembre 2018 à bord d'une fusée H-2B depuis la base de Tanegashima a finalement eu lieu le 23 septembre du fait des conditions météorologiques. Il s'agit de deux nano-satellites de 10 centimètres de côté reliés par un câble de 10 mètres. Une petite cabine de quelques centimètres effectue ensuite des allers-retours le long de ce câble[11].

Dans la culture populaire

Littérature

Télévision

Manga et anime

  • Dans l'OAV de science-fiction Cyber City Oedo 808 (1990), une représentation d'un ascenseur spatial est visible (troisième épisode, « Virus Mortel »).
  • Dans la série Gundam 00, trois ascenseurs orbitaux de 50 000 km de hauteur ont été construits et sont reliés par deux ceintures de satellites solaires, l'une à 10 000 et l'autre à 40 000 km d'altitude, qui renvoient l'énergie sur Terre via les ascenseurs. Ils sont aussi utilisés pour le transport de touristes et l'exploration spatiale.
  • Dans le manga Gunnm (et sa suite Gunnm Last Order), les cités Jéru et Zalem où se passent une partie de l'action sont les deux extrémités d'un ascenseur spatial.
  • Dans le manga Biomega, l'ascenseur spatial permet de relier le MSCF numéro 3 au satellite artificiel orbitant autour de la Terre. l'ascenseur est appelé « câble d’amarrage ».

Jeux vidéo

  • La saga Halo fait apparaître des ascenseurs spatiaux dans plusieurs de ses jeux.
  • Le jeu Satisfactory contient un ascenseur spatial, c'est un élément important du jeu permettant d'envoyer des ressources afin de débloquer de nouveaux paliers.
  • La saga Ace Combat fait notamment apparaître un ascenseur spatial dans le septième jeu de leur série.[réf. nécessaire].
  • Dans Mega Man X8, un ascenseur orbital portant le nom de Projet Jakob est au centre de l'intrigue.

Notes et références

Notes

  1. Cette résistance pourrait théoriquement atteindre 300 GPa, mais une partie de la résistance est perdue dans l'opération de liaison des fibres en un câble[4].
  2. En 2009, une équipe de Seattle a cependant remporté 900 000 US $ pour une machine fonctionnant avec des rayons laser ; source : Stephen Chen, « Un ascenseur pour l'espace », Courrier international no 1462, 8-14 novembre 2018, p. 43.

Références

  1. « Constantin Tsiolkovsky, Grezy o Zemle i Nebe (i) Na Veste » (en russe), Spéculations au sujet de la Terre et du Ciel, et sur Vesta Académie des Sciences de l'URSS, Moscou, 1959, p. 35 (publié pour la première fois en 1895)
  2. (en) « Nasa hopes to catch an elevator to space », sur le site de The Guardian.
  3. (en) John D. Isaacs, Allyn C. Vine, Hugh Bradner et George E. Bachus, « Satellite Elongation into a True "Sky-Hook" », Science, no 3311,‎ , p. 682-683 (DOI 10.1126/science.151.3711.682, lire en ligne).
  4. a et b Stephen Chen, « Un ascenseur pour l'espace », Courrier international, no 1462,‎ 8-14 novembre 2018, p. 43
  5. Christophe Olry, « Ascenseur spatial : un rêve qui manque de solidité... », sur Futura-Sciences (consulté le ).
  6. « Ascenseur spatial : un rêve qui manque de solidité… », Christophe Olry, futura-sciences.com, 23 mai 2006.
  7. « On the strength of the carbon nanotube-based space elevator cable: from nanomechanics to megamechanics »(Archive.orgWikiwixArchive.isGoogleQue faire ?) [PDF], sur ej.iop.org.
  8. a b c d e f g h et i Science et Vie no 1218, mars 2019, pages 92-99.
  9. (en) The Spaceward Foundation, « 2008 Tether Strength Competition », sur spaceward.org (consulté le ).
  10. (en) Stephen Chen, « China has strongest fibre that can haul 160 elephants – and a space elevator? », South China Morning Post, Hong Kong,‎ (lire en ligne).
  11. (en-US) « Japan's HTV-7 arrives at ISS - will test new recoverable capsule », sur NASASpaceFlight.com, (consulté le )

Voir aussi

Sur les autres projets Wikimedia :

Article connexe

Liens externes

Read other articles:

Pour les articles homonymes, voir Hoshino. Naoki Hoshino星野 直樹 Données clés Naissance 10 avril 1892 Yokohama, Japon Décès 26 janvier 1978 (à 85 ans) Tokyo, Japon Nationalité Japonaise Profession Bureaucrate, homme politique Formation Université impériale de Tokyo modifier Hoshino en 1941. Naoki Hoshino (星野 直樹?), né le 10 avril 1892 à Yokohama et décédé à l'âge de 85 ans le 26 janvier 1978 à Tokyo, est un bureaucrate et homme politique japonais des ères Taish…

Sculptural group outside Liverpool Street station, London Kindertransport – The ArrivalThe sculpture in 2011ArtistFrank MeislerLocationLondon, United KingdomCoordinates51°31′03″N 0°04′57″W / 51.517586°N 0.082563°W / 51.517586; -0.082563 Kindertransport – The Arrival is an outdoor bronze memorial sculpture by Frank Meisler, located in the forecourt of Liverpool Street station in London, United Kingdom.[1] It commemorates the 10,000 Jewish children w…

كرة القدم في الألعاب الأولمبية الصيفية 2016تفاصيل المسابقةالبلد المضيف البرازيلالتواريخ3 – 20 أغسطس 2016الفرق16 منتخب رجال12 منتخب سيداتالأماكن10 (في 7 مدن مضيفة)المراكز النهائيةالبطل البرازيل ألمانياالوصيف ألمانيا السويدالمركز الثالث نيجيريا كنداالمركز …

Music radio station in Prescott, Arizona KAHMSpring Valley, ArizonaBroadcast areaPrescott–Flagstaff–PhoenixFrequency102.1 MHzBrandingFM 102.1ProgrammingFormatBeautiful Music - Easy ListeningOwnershipOwnerFarmworker Educational Radio Network (Cesar Chavez Foundation)(Phoenix Radio Broadcasting, LLC)Sister stationsKYCAHistoryFirst air dateSeptember 9, 1981; 42 years ago (1981-09-09)Former frequencies103.9 MHz (1980s)Call sign meaningThe call letters KAHM, when spoken as a wor…

45°27′54.25″N 9°11′17.06″E / 45.4650694°N 9.1880722°E / 45.4650694; 9.1880722 Building in Milan, ItalyPalazzo dei GiureconsultiPalazzo dei Giureconsulti looking east, with the Duomo in the background.General informationTown or cityMilanCountryItalyConstruction started1562ClientPope Pius IVDesign and constructionArchitect(s)Vincenzo Seregni The Giureconsulti Palace (in Italian: Palazzo dei Giureconsulti),[1] also known as Palazzo Affari ai Giureconsulti…

تحالف ابتكارات التأهب الوبائي   الاختصار (بالإنجليزية: CEPI)‏  البلد النرويج  المقر الرئيسي أوسلو  تاريخ التأسيس 30 أغسطس 2016[1]  مكان التأسيس المنتدى الاقتصادي العالمي  المؤسس صندوق ويلكم،  ومؤسسة بيل ومليندا غيتس،  والنرويج،  واليابان،  وألمانيا، …

U.S. Air Force fitness test Airman executing a push-up The United States Air Force Physical Fitness Assessment (PFA) is designed to test the body composition, muscular strength/endurance, and cardiovascular respiratory fitness of airmen in the United States Air Force. As part of the Fit to Fight program, the Air Force adopted a more stringent physical fitness assessment in 2004 and replaced the annual ergo-cycle (stationary bike) test that the Air Force had used for several years.[1][…

Pemerintahan JepangLambang PemerintahanInformasiDidirikan1885NegaraJepangPemimpinPerdana MenteriDitetapkan olehKaisarBagian badanKabinetBertanggung jawabuntukParlemenKantor pusatChiyoda, TokyoSitus webhttp://www.japan.go.jp/ Jepang Artikel ini adalah bagian dari seri Politik dan KetatanegaraanJepang Konstitusi Konstitusi Jepang Sejarah Hukum Monarki Kaisar (daftar) Akihito Putra Mahkota Naruhito Istana Kaisar Badan Rumah Tangga Kekaisaran Badan legislatif Parlemen Jepang Dewan Perwakilan Rakyat …

Ісламський культурний центрРозташування  Україна, ВінницяЗасновник ВАГО АльраідПочаток будівництва 2006Належність ІсламАдреса вул. Матроса Кішки, 63Вебсайт ВАОО Альраід Ісламський культурний центр — мечеть і культурна організація в місті Вінниці. Будівля ісламсько…

Kurdish engineer and technology entrepreneur Eren BaliBorn1984NationalityTurkishKnown forUdemy, Carbon Health Eren Bali (born 1984, Malatya, Turkey) is a Turkish[1] engineer and technology entrepreneur based in the United States. He was the founding CEO of Udemy, a platform and marketplace for massive open online courses (MOOCs), and he is now the founder and CEO of Carbon Health, a primary healthcare franchise based in San Francisco.[2][3][4][5][…

Куп'янський район адміністративно-територіальна одиниця Район на карті Харківська область Основні дані Країна:  Україна Область: Харківська область Код КАТОТТГ: UA63080000000032022 Утворений: 19 липня 2020 року Населення: 137 200 осіб (2020)[1] Площа: 4612,9[2] км² Населені пункт…

American private Catholic high school For schools of a similar name, see Don Bosco School. Don Bosco Preparatory High SchoolAddress492 North Franklin TurnpikeRamsey, (Bergen County), New Jersey 07446United StatesCoordinates41°04′19″N 74°08′09″W / 41.072038°N 74.135707°W / 41.072038; -74.135707InformationTypePrivateMottoLatin: Crescere Scientia et Gratia(To Increase in Knowledge and Grace)Religious affiliation(s)CatholicEstablished1915NCES School ID00863362[…

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Kaleshwaram – news · newspapers · books · scholar · JSTOR (June 2013) (Learn how and when to remove this messa…

I liga 1971-1972 Competizione I liga Sport Calcio Edizione 46ª Organizzatore PZPN Luogo  Polonia Partecipanti 14 Formula Girone unico Sito web pzpn.pl Risultati Vincitore Górnik Zabrze(10º titolo) Retrocessioni Stal RzeszówSzombierki Bytom Statistiche Miglior marcatore Ryszard Szymczak (16) Incontri disputati 182 Gol segnati 402 (2,21 per incontro) Cronologia della competizione 1970-71 1972-73 Manuale L'edizione 1971-72 della I liga vide la vittoria finale del Górnik Zabrze. …

Extinct order of fishes PorolepiformesTemporal range: 416–318 Ma PreꞒ Ꞓ O S D C P T J K Pg N Devonian and Carboniferous Various genera Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Clade: Sarcopterygii Clade: Rhipidistia Clade: Dipnomorpha Class: Porolepimorpha Order: †PorolepiformesJarvik 1942 Genera †Porolepidae †Heimenia ØRvik 1969 †Porolepis †Holoptychiidae Owen 1860 ?†Duffichthys Ahlberg 1992 ?†Ventalepis Schultze 1980 †Pseudosaur…

Keuskupan Novgorod dan Staraya RussaOrtodoks Katedral Santa Sofia, Juli 2009LokasiKantor pusatVeliky NovgorodInformasiDenominasiOrtodoks TimurGereja sui iurisGereja Ortodoks RusiaPendirianakhir abad ke-10Kepemimpinan kiniBentukEparkiUskupLeo (Tserpitsky)Situs webwww.vn-eparhia.ru Keuskupan Novgorod dan Staraya Russa (bahasa Rusia: Новгородская и Старорусская епархия) adalah salah satu eparki tertua di Gereja Ortodoks Rusia. Para uskup agung abad pertengah…

伊塔佩马Itapema市镇伊塔佩马在巴西的位置坐标:27°05′24″S 48°36′39″W / 27.09°S 48.6108°W / -27.09; -48.6108国家巴西州圣卡塔琳娜州面积 • 总计59.022 平方公里(22.789 平方英里)海拔2 公尺(7 英尺)人口(2007) • 總計33,766人 • 密度572人/平方公里(1,482人/平方英里) 伊塔佩马(葡萄牙语:Itapema)是巴西圣卡塔琳娜州的一…

1979 1986 Élections générales espagnolesde 1982 dans les îles Baléares 6 sièges au Congrès des députés 28 octobre 1982 Corps électoral et résultats Inscrits 466 909 Votants 372 330   79,74 %  10,1 Votes exprimés 356 539 Votes blancs 2 148 Votes nuls 15 791 Parti socialiste ouvrier espagnol Voix 144 232 40,45 %   11,1 Députés élus 3  1 Alliance populaire - Parti démocrate populaire Voix 134 444 37,71…

Haymakers redirects here. For other uses, see Haymaker. 1999 studio album by Paul McCartney with the London Symphony Orchestra and the Loma Mar QuartetWorking ClassicalStudio album by Paul McCartney with the London Symphony Orchestra and the Loma Mar QuartetReleased1 November 1999Recorded1998–1999StudioEMI Studios, Abbey RoadGenreClassical, chamber musicLength61:35LabelEMI ClassicsProducerJohn FraserPaul McCartney chronology Run Devil Run(1999) Working Classical(1999) Liverpool Sound C…

Louis Brandeis Supreme Court nominationNomineeLouis BrandeisNominated byWoodrow Wilson (president of the United States)SucceedingJoseph Rucker Lamar (associate justice)Date nominatedJanuary 28, 1916Date confirmedJune 1, 1916OutcomeConfirmed by the U.S. SenateVote of subcommittee of the Senate Judiciary CommitteeVotes in favor3Votes against2ResultReported favorablyFull Senate Judiciary Committee voteVotes in favor10Votes against8ResultReported favorablySenate confirmation voteVotes in favor47Vote…